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Abstract 

These notes were written for an introductory course on the application of multigrid 

methods to elliptic and hyperbolic partial differential equations for engineers, physicists and 

applied mathematicians. The use of more advanced mathematical tools, such as functional 

analysis, is avoided. The course is intended to be accessible to a wide audience of users 

of computational methods. We restrict ourselves to finite volume and finite difference dis- 

cretization. The basic principles are given. Smoothing methods and Fourier smoothing 

analysis are reviewed. The fundamental multigrid algorithm is studied. The smoothing 

and coarse grid approximation properties are discussed. Multigrid schedules and structured 

programming of multigrid algorithms are treated. Robustness and efficiency are considered. 
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1    Introduction 

Readership 
The purpose of these notes is to present, at graduate level, an introduction to the application 
of multigrid methods to elliptic and hyperbolic partial differential equations for engineers, 
physicists and applied mathematicians. The reader is assumed to be familiar with the basics 
of the analysis of partial differential equations and of numerical mathematics, but the use 
of more advanced mathematical tools, such as functional analysis, is avoided. The course 
is intended to be accessible to a wide audience of users of computational methods. We do 
not, therefore, delve deeply into the mathematical foundations. This is done in the excellent 
monograph by Hackbusch [57], which treats many aspects of multigrid, and also contains 
many practical details. The book [141] is more accessible to non-mathematicians, and pays 
more attention to applications, especially in computational fluid dynamics. 

Other introductory material can be found in the article Brandt [20], the first three chap- 
ters of [85] and the short elementary introduction [27]. The notes are based on parts of [141], 
where further details may be found, and other subjects are discussed, notably applications in 
computational fluid dynamics. 

Significance of multigrid methods for scientific computation 
Needless to say, elliptic and hyperbolic partial differential equations are, by and large, at the 
heart of most mathematical models used in engineering and physics, giving rise to extensive 
computations. Often the problems that one would like to solve exceed the capacity of even 
the most powerful computers, or the time required is too great to allow inclusion of advanced 
mathematical models in the design process of technical apparatus, from microchips to aircraft, 
making design optimization more difficult. Multigrid methods are a prime source of impor- 
tant advances in algorithmic efficiency, finding a rapidly increasing number of users. Unlike 
other known methods, multigrid offers the possibility of solving problems with N unknowns 
with O(N) work and storage, not just for special cases, but for large classes of problems. 

Historical development of multigrid methods 
Table 1.0.1, based on the multigrid bibliography in [85], illustrates the rapid growth of the 
multigrid literature, a growth which has continued unabated since 1985. 

As shown by Table 1.0.1, multigrid methods have been developed only recently. In what 
probably was the first 'true' multigrid publication, Fedorenko [43] formulated a multigrid al- 
gorithm for the standard five-point finite difference discretization of the Poisson equation on 
a square, proving that the work required to reach a given precison is O(N). This work was 
generalized to the central difference discretization of the general linear elliptic partial differ- 
ential equation (3.2.1) in Q, = (0,1) x (0,1) with variable smooth coefficients by Bachvalov [8]. 



The theoretical work estimates were pessimistic, and the method was not put into practice at 
the time. The first practical results were reported in a pioneering paper by Brandt [19], who 
published another paper in 1977 [20], clearly outlining the main principles and the practical 
utility of multigrid methods, which drew wide attention and marked the beginning of rapid 
development. The multigrid method was discovered independently by Hackbusch [50], who 
laid firm mathematical foundations and provided reliable methods ([52], [53], [54]). A re- 
port by Frederickson [47] describing an efficient multigrid algorithm for the Poisson equation 
led the present author to the development of a similar method for the vorticity-stream func- 
tion formulation of the Navier-Stokes equations, resulting in an efficient method ([135], [143]). 

At first there was much debate and scepticism about the true merits of multigrid methods. 
Only after sufficient initiation satisfactory results could be obtained. This led a number of 
researchers to the development of stronger and more transparent convergence proofs ([4], [93], 
[94], [51], [54], [136], [137]) (see [57] for a survey of theoretical developments). Although rate 
of convergence proofs of multigrid methods are complicated, their structure has now become 
more or less standartized and trasparenr. Other outhors have tried to spead confidence in 
multigrid methods by providing efficient and reliable computer programs, as much as possi- 
ble of 'black-box' type, for uninitiated users. A survey will be given later. The 'multigrid 
guide' of Brandt ([16], [23]) was provided to give guidelines for researchers writing their own 
multigrid programs. 

"Year 64    66    71    72    73    75    76    77    78    79    80    81    82    83    84      85~ 
Number      1      1      1      1      1      1      3    11    10    22    31    70    78    96    94    149 

Table 1.0.1: Years number of multigrid publications 

Scope of these notes 
The following topics will not be treated here: parabolic equations, eigenvalue problems and 
integral equations. For an introduction to the application of multigrid methods to these 
subjects, see [56], [57] and [18]. There is relatively little material in these areas, although 
multigrid can be applied profitably. For important recent advances in the field of integral 
equations, see [25] and [130]. A recent publication on parabolic multigrid is [91]. Finite 
element methods will not be discussed, but finite volume and finite difference discretization 
will be taken as the point of departure. Although most theoretical work has been done in a 
variational framework, most applications use finite volumes or finite differences. The princi- 
ples are the same, however, and the reader should have no difficulty in applying the principles 
outlined in this book in a finite element context. 



Multigrid principles are much more widely applicable than just to the numerical solution 
of differential and integral equations. Applications in such diverse areas as control theory, 
optimization, pattern recognition, computational tomography and particle physics are begin- 
ning to appear. For a survey of the wide ranging applicability of multigrid principles, see [17], 
[18]. 

Notation 
The notation is explained as it occurs. Latin letter like u denote unknown functions. The 
bold version u denotes a grid function, with value Uj in grid point Xj, intended as the discrete 
approximation of U(XJ). 

2    The basic principle of multigrid methods for partial differ- 
ential equations 

2.1 Introduction 

In this chapter, the basic principle of multigrid for partial differential equations will be ex- 
plained by studying a one-dimensional model problem. Of course, one-dimensional problems 
do not require application of multigrid methods, since for the algebraic systems that result 
from discretization direct solution is efficient, but in one dimension multigrid methods can be 
analysed by elementary methods, and their essential principle is easily demonstrated. 

Introductions to the basic principles of multigrid methods are given by [20], [27], [28] and 
[141]. More advanced expositions are given by [112], [16] and [57], Chapter 2. 

2.2 The basic principle 

One-dimensional model problem 
The following model problem will be considered 

- d2u/dx2 = f{x)   in    O = (0,1),   u(0) = du(l)/dx = 0 (2.2.1) 

A computational grid is defined by 

G = {x £ M : x = XJ =jh, j = 1,2, ...,2n, h = 1/2«} (2.2.2) 

The points {XJ} are called the vertices of the grid. 
Equation (2.2.1) is discretized with finite differences as 

h-2(2Ul-u2)    =    /i 



h-2(-uj.l + 2uj-uj+1)   =   fj,   j = 2,3,..,2n-l (2.2.3) 
1 

h~2(-U2n-l + U2n)     =     ö/; 2n 2' 

where fj = f(xj) and UJ is intended to approximate U(XJ). The solution of Equation (2.2.1) 
is denoted by u, the solution of Equation (2.2.3) by u and the value of u in Xj by Uj Uj 
approximates the solution in the vertex xy, thus Equation (2.2.3) is called a vertex-centered 
discretization. The number of meshes in G is even, to facilitate application of a two-grid 
method. The system (2.2.3) is denoted by 

Au = f (2.2.4) 

Gauss-Seidel iteration 
In multidimensional applications of finite difference methods, the matrix A is large and sparse, 
and the non-zero pattern has a regular structure. These circumstances favour the use of 
iterative methods for solving (2.2.4). We will present one such method. Indicating the rath 
iterand by a superscript ra, the Gauss-Seidel iteration method for solving (2.2.3) is defined 
by, assuming an initial guess u° is given, 

2«?    =   u^ + h2/, l 
-«£.!+2uJ*    =   uj

l-1
1 + h2fj,j = 2,3,...,2n-l (2.2.5) 

-«&-!+«&     =      \h2hn 

Fourier analysis of convergence 
For ease of analysis, we replace the boundary conditions by periodic boundary conditions: 

tt(l) = u(0) (2.2.6) 

Then the error em = um - u°° is periodic and satisfies 

-e^-L + zej  - ej+1   ,    e^  - ej+2n \L.L.I) 

As will be discussed in more detail later, such a periodic grid function can be represented by 
the following Fourier series: 

eT=    E    Cexp(ij0a),    0a = Tva/n (2.2.8) 
o»=—n+1 

Because of the orthogonality of {e»e"}, it suffies to substitute ej1-1 = c™-xeiie* in (2.2.7). 

This gives ef = c^eijBa with 

C = g{ea)cr\   g(ea) = eie°/(2-e-ie°) (2.2.9) 



The function g(9a) is called the amplification factor. It measures the growth or decay of a 
Fourier mode of the error during an iteration. We find 

|ff(ÖQ)| = (5-4cosöa)-1/2 (2.2.10) 

At first it seems that Gauss-Seidel does not converge, because 

max{\g(6a)\ : 9a = ira/n, a = -n + 1, -n + 2,..., n} = \g(0)\ = 1 (2.2.11) 

However, with periodic boundary conditions the solution of (2.2.1) is determined up to a 
constant only, so that there is no need to require that the Fourier mode a = 0 decays during 
iteration. Equation (2.2.11), therefore, is not a correct measure of convergence, but the 
following quantity is: 

max{|#(0a)| : 6a   =   na/n, a = -n + 1, -n+ 2,...,n,a ^ 0} = \g(0i)\ 

=   {l-2el + 0(6i)}-1/2 = l-4x2h2 + 0(h4). (2.2.12) 

It follows that the rate of convergence deteriorates as h [ 0. Apart from special cases, 
in the context of elliptic equations this is found to be true of all socalled basic iterative 
methods (more on these later; well known examples are the Jacobi, Gauss-Seidel and successive 
over-relaxation methods) by which a grid function value is updated using only neighbouring 
vertices. This deterioration of rate of convergence is found to occur also with other kinds of 
boundary conditions. The purpose of multigrid is to avoid this deterioration, and to achieve 
a rate of convergence which is independent of h. 

The essential multigrid principle 
The rate of convergence of basic iterative methods can be improved with multigrid methods. 
The basic observation is that (2.2.10) shows that \g(0a)\ decreases as a increases. This 
means that, although long wavellength Fourier modes (a close to 1) decay slowly (\g(9a)\ = 
1 - 0(h2)), short wavelength Fourier modes are reduced rapidly. The essential multigrid 
principle is to approximate the smooth (long wavelength) part of the error on coarser grids. 
The non-smooth or rough part is reduced with a small number (independent of h) of iterations 
with a basic iterative method on the fine grid. 

Fourier smoothing analysis 
In order to be able to verify whether a basic iterative method gives a good reduction of the 
rough part of the error, the concept of roughness has to be defined precisely. 

Definition 2.2.1 The set of rough wavenumbers Qr is defined by 

0r = {9a = na/n, \a\ >cn,a=-n+ 1, -n + 2,..., n} (2.2.13) 



where 0 < c < 1 is fixed constant independent of n. 

The performance of a smoothing method is measured by its smoothing factor p, defined as 
follows. 

Definition 2.2.2 The smoothing factor p is defined by 

p = max{|<7(0Q)| : 0a € 0r} (2.2.14) 

When for a basic iterative method p < 1 is bounded away from 1 uniformly in h, we say that 
the method is a smoother. Note that p depends on the iterative method and on the problem. 
For Gauss-Seidel and the present model problem p is easily determined. Equation (2.2.10) 
shows that \g\ decreases monotonically, so that 

/9 = (5-4cosc7r)-1/2 (2.2.15) 

Hence, for the present problem Gauss-Seidel is a smoother. 
It is convenient to standardize the choice of c. Only the Fourier modes that cannot be 
represented on the coarse grid need to be reduced by the basic iterative method; thus it is 
natural to let these modes constitute 0r. We choose the coarse grid by doubling the mesh-size 
of G. The Fourier modes on this grid have wavenumbers 6a given by (2.2.8) with n replaced 
by n/2 (assuming for simpbcity n to be even). The remaining wavenumbers are defined to 
be non-smooth, and are given by (2.2.13) with 

c=l/2 (2.2.16) 

Equation (2.2.15) then gives the following smoothing factor for Gauss-Seidel 

p = 5~1/2 (2.2.17) 

This type of Fourier smoothing analysis was originally introduced by Brandt [20]. It is a 
useful and simple tool. When the boundary conditions are not periodic, its predictions are 
found to remain qualitatively correct, except in the case of singular perturbation problems, 
to be discussed later. 

With smoothly varying coefficients, experience shows that a smoother which performs well 
in the 'frozen coefficient' case» will also perform well for variable coefficients. By the 'frozen 
coefficient' case we mean a set of constant coefficient cases, with coefficient values equal to the 
values of the variable coefficients under consideration in a sufficiently large sample of points 
in the domain. 



Exercise 2.2.1 Determine the smoothing factor of the damped Jacobi method (defined later) 
to problem (2.2.5) with boundary conditions (2.2.6). Note that with damping parameter u = 1 
this is not a smoother. 

Exercise 2.2.2 Determine the smoothing factor of the Jacobi method applied to problem 
(2.2.5) with Dirichlet boundary conditions u(0) = u(l) = 0, by using the Fourier sine series. 
Note that the smoothing factor is the same as obtained with the exponential Fourier series. 

Exercise 2.2.3 Determine the smoothing factor of the Gauss-Seidel method for central 
discretization of the convection-diffusion equation cdu/dx — ed2u/dx2 = /. Show that for 
\c\h/e > 1 and c < — 1 we have no smoother. 

2.3    The two-grid algorithm 

Coarse grid approximation 
A coarse grid G is defined by doubling the mesh-size of G: 

G = {x e R : x = XJ = jh, j = 1,2,..., n, h = 1/n} (2.3.1) 

The vertices of G also belong to G; thus this is called vertex-centered coarsening. The original 
grid G is called the fine grid. Let 

U:G^R,     Ü:G^M (2.3.2) 

be the sets of fine and coarse grid functions, respectively. A prolongation operator P : Ü —>■ U 
is defined by linear interpolation: 

Pu2j = üj,    Pü2j+i = -(% + %+i) (2.3.3) 

Overbars indicate coarse grid quantities. A restriction operator R : U —► Ü is defined by the 
following weighted average 

«111 , Rui = 4U2j-i + 2U2j + ^2j+i (2.3.4) 

where Uj is defined to be zero outside G.  Note that the matrices P and R are related by 
R = \P , but this property is not essential. 
The fine grid equation (2.2.4) must be approximated by a coarse grid equation 

Äü = f 



Like the finite grid matrix A, the coarse grid matrix A may be obtained by discretizing 
Equation (2.2.1). This is called discretization coarse grid approximation. An alternative is 
the following. The fine grid problem (2.2.4) is equivalent to 

(Au,v) = (f,v),   ueU,VveU (2.3.5) 

with (.,.) the standard inner product on U. We want to find an approximated solution Pü 
with ü € Ü. This entails restriction of the, test functions v to asubspace with the same 
dimension as Ü, that is, test functions of the type Pv with v G U, and P a prolongation 
operator that may be different from P: 

(APÜ, Pv) = (/, Pv),   üeÜ,VveÜ (2.3.6) 

or 
(P*APü,v) = (P*f,v),   ü£Ü,VveÜ (2.3.7) 

where now of course (.,.) is over Ü, and superscript * denotes the adjoint (or transpose in 
this case). Equation (2.3.7) is equivalent to 

Äü=f (2.3.8) 

with 
A = RAP (2.3.9) 

and / = Ä/; we have replaced P* by R.  This choice of A is called Galerkin coarse grid 

approximation. 
With A, P and R given by (2.2.3), (2.3.3) and (2.3.4), Equation (2.3.9) results in the following 

A 

Äüi    =   /i~2(2üi - ü2) 

Aüj    =   h-2(-üj-1+2üj-üj+1),   ; = 2,3,...,n-l (2.3.10) 

Äün   =   ü_2(-ö„_i + ün) 

which is the coarse grid equivalent of the left-hand side of (2.2.3). Hence, in the present 
case there is no difference between Galerkin and discretization coarse grid approximation. 
The derivation of (2.3.10) is discussed in Exercise 2.3.1. The formula (2.3.9) has theoretical 
advantages, as we shall see. 

Coarse grid correction 
Let ü be an approximation to the solution of (2.2.4). The error e = u-u is to be approximated 
on the coarse grid. We have 

Ae = -r = Au-f (2.3.11) 



The coarse grid approximation u of -e satisfies 

ÄÜ = Rr (2.3.12) 

In a two-grid method it is assumed that (2.3.12) is solved exactly, the coarse grid correction 
to be added to ü is Pü: 

Ü:=ü + Pü (2.3.13) 

Linear two-grid algorithm 
The two-grid algorithm for linear problems consists of smoothing on the fine grid, approxima- 
tion of the required correction on the coarse grid, prolongation of the coarse grid correction 
to the fine grid, and again smoothing on the fine grid. The precise definition of the two-grid 
algorithm is 

comment Two-grid algorithm; 
Initialize u°; 

for    i := 1 step 1 until ntg do 
uW-^Siu0, A,/,*!); 
r:=f- Au1/3; 
ü := A~ Rr; 
v?lz := -u1/3 + Pü; 
ul:=S(u2/3,A,f,v2); 

od (2.3.14) 

The number of two-grid iterations carried out is ntg. S(u°,A,f,vi) stands for vx smoothing 
iterations, for example with the Gauss-Seidel method discussed earlier, applied to Au = /, 
starting with u°. The first application of S is called pre-smoothing, the second post-smoothing. 

Exercise 2.3.1 Derive (2.3.10) (Hint. It is easy to write down RAui in the interior and at 
the boundaries. Next, one replaces «,- by P«,-.) 

2.4    Two-grid analysis 

The purpose of two-grid analysis (as of multigrid analysis) is to show that the rate of conver- 
gence is independent of the mesh-size h. We will analyse algorithm (2.3.14) for the special 
case i^i = 0 (no-presmoothing). 

Coarse grid correction 
From (2.3.14) it follows that after coarse grid correction the error e2/3 = it2/3 - u satisfies 

e2/3 = el/3 + pÄl/3 = jBgl/3 (2.4.!) 



with the iteration matrix or error amplification matrix E defined by 

E = I-PA'lRA (2.4.2) 

We will express e2/3 explicitly in terms of e1/3. This is possible only in the present simple 
one-dimensional case, which is our main motivation for studying this case. Let 

e1/3 = d + Pe,   with tj = elf (2.4.3) 

Then it follows that 
e2/3 = Ee1'3 = Ed (2.4.4) 

We find from (2.4.3) that 

d2j = 0,    d2j+1 = -\e)'3 + elf+1 - \ef+2 (2.4.5) 

Furthermore, from (2.4.5) it follows that 

RAd = 0 (2.4.6) 

so that 
e2/3 = d (2.4.7) 

Smoothing 
Next, we consider the effect of post-smoothing by one Gauss-Seidel iteration. From (2.2.5) it 
follows that the error after post-smoothing e1 = u1 - u is related to e2/3 by 

2ej    =   e2 

-e)_1+2e)    =   e%\,   j = 2,3, ...,2n- 1 (2.4.8) 

-eL-i + 4n    =    0 

Using (2.4.5)(2.4.7) this can be rewritten as 

e\    =   0 

4j   =    2d2j+1 + Ae^~2 '    e2j+i = 2e^''   J = 1>2,-,«-l (2A9) 
„1        —     c1 
e2n     —     e2n-l 

By induction it is easy to see that 

\e\j\ < d|d||oo ,    \\d\\oo = max{|d,-| : j = l,2,...,2n} (2.4.10) 

10 



Since d = e2/3, we see that Gauss-Seidel reduces the maximum norm of the error by a factor 
2/3 or less. 

Rate of convergence 
Since ej    = 0 because of the boundary conditions, it follows from (2.4.5) that 

Moo < ^lAeV (2.4.11) 

since e1/3 = e° (no pre-smoothing). 
From (2.4.9) it follows that 

Ae\j =     4^2j+l - 16<%-1 - 64d2j-3 - ... (2.4.12) 

Hence, using (2.4.10), 

4P1. —     — ±f>   ■ 

l^l<|l|d||oo,    |^C2i-i|<|||d||oo (2-4.13) 

Substitution of (2.4.11) gives 

Halloo <^||r°||co (2-4.14) 

where r = Ae is the residual. This shows that the maximum norm is reduced by a factor of 
5/12 or better, independent of the mesh-size. 

This type of analysis is restricted to the particular case at hand. More general cases will be 
treated later by Fourier-analysis. There a drawback is of course the assumption of periodic 
boundary conditions. The general proofs of rate of convergence referred to in the introduction 
do not give sharp estimates. Therefore the sharper estimates obtainable by Fourier analysis 
are more useful for debugging codes. On the sharpness of rate of convergence predictions 
based on Fourier analysis, see [24]. 

Again: the essential principle 
How is the essential principle of multigrid, discussed in Section 2.2, recognized in the foregoing 
analysis? Equations (2.4.6) and (2.4.7) show that 

ÄAe2/3 = 0 (2.4.15) 

Application of R means taking a local average with positive weights; thus (2.4.15) implies 
that Ae2/3 has many sign changes, and is therefore rough. Since Ae2/3 = Au2/2 - / is 
the residual, we see that after coarse grid correction the residual is rough. The smoother 
is efficient in reducing this non-smooth residual further, which explains the /i-independent 

11 



reduction shown in (2.4.14). 

Exercise 2.4.1 In the definition of G (2.2.2) and G (2.3.1) we have not included the point 
x = 0, where a Dirichlet condition holds. If Neumann condition is given at x = 0, the point 
x = 0 must be included in G and G. If one wants to write a general multigrid program for 
both cases, x = 0 has to be included. Repeat the foregoing analysis of the two-grid algorithm 
with x = 0 included in G and G. Note that including x = 0 makes A non-symmetric. This 
difficulty does not occur with cell-centered discretization, to be discussed in the next chapter. 

3    Basic Iterative Methods 

3.1    Introduction 

Smoothing methods in multigrid algorithms are usually taken from the class of basic iterative 
methods, to be defined below. This chapter presents an introduction to these methods. A 
more detailed account may be found in [141]. 

Basic iterative methods 
Suppose that discretization of the partial differential equation to be solved leads to the fol- 
lowing linear algebraic system 

Ay = b (3.1.1) 

Let the matrix A be split as 
A = M-N (3.1.2) 

with M non-singular. Then the following iteration method for the solution of (3.1.1) is called 
a basic iterative method: 

Mym+1 = Nym + b (3.1.3) 

or 

with 

so that we have 

ym+l = Sym + Tb (3.1.4) 

S = M~1N,   T = M~1 (3.1.5) 

ym+1 = Sym + M~lb ,    S = M-1N ,    N = M - A (3.1.6) 

The matrix S is called the iteration matrix of iteration method (3.1.6). 
Basic iterative method may be damped, by modifying (3.1.6) as follows 

y* =    Sym + M~xb 
y"H-i    =   uy* + (1 -u)ym 

12 

(3.1.7) 



By elimination of y* one obtains 

ym+l _ S8ym + wM-lfc (3.1-8) 

with 
S*=uS+(l-u)I (3.1.9) 

The eigenvalues of the undamped iteration matrix S and the damped iteration matrix S* are 
related by 

A(5*) = wA(5) + 1 - w (3.1.10) 

Although the possibility that a divergent method (3.1.6) or (3.1.8) is a good smoother (a con- 
cept to be explained later) cannot be excluded, the most likely candidates for good smoothing 
methods are to be found among convergent methods. In the next section, therefore, some 
results on convergence of basic iterative methods are presented.  For more background, see 
[129] and [151]. 

Exercise 3.1.1 Show that (3.1.8) corresponds to the splitting 

M* = M/u ,   N* = A-M* (3.1.11) 

3.2    Convergence of basic iterative methods 

Convergence 
In the convergence theory for (3.1.3) the following concepts play an important role. We have 
My = Ny + b, so that the error em = ym - y satisfies 

em+1 = Sem (3.2.1) 

As shown in many textbooks, we have 

Theorem 3.2.2 Convergence of (3.1.3) is equivalent to 

p(S < 1 (3.2.2) 

with p(S) the spectral radius of S. 

Regular splittings and M- and K-matrices 

Definition 3.2.2 The splitting (3.1.2) is called regular if M'1 > 0 and N > 0 (elementwise). 
The splitting is convergent when (3.1.3) converges. 

Definition 3.2.3 ([129], Definition 3.3). The matrix A is called an M-matrix if a^ < 0 for 

13 



all i,j with i^ j, A is non-singular and A'1 > 0 (elementwise). 

Theorem 3.2.3 A regular splitting of am M-matrix is convergent. 

Proof. See [129] Theorem 3.13. D 

Unfortunately, a regular splitting of an M-matrix does not necessary give a smoothing method. 
A counterexample is the Jacobi method (to be discussed shortly) applied to Laplace's equa- 
tion (see later). In practice, however, it is easy to find good smoothing methods if A is an 
M-matrix. As discussed in [145], a convergent iterative method can always be turned into a 
smoothing method by introduction of damping. We will find later that often the efficacy of 
smoothing methods to be enhanced significantly by damping. Damped version of the methods 
to be discussed are obtained easily, using equations (3.1.8), (3.1.9) and (3.1.10). 

Hence, it is worthwhile to try to discretize in such way that the resulting matrix A is 
an M-matrix. In order to make it easy to see if a discretization matrix is an M-matrix we 
present the following theorem. 

Definition 3.2.4 A matrix A is called irreducible if from (3.1.1) one cannot extract a sub- 
system that can be solved independently. 

Definition 3.2.5 A matrix A is called a K-matrix if 

a; 

aij 

and 

>    0, Vt, (3.2.3) 

<   0, Vi,j   with   i^j (3.2.4) 

5>;>0,Vt, (3.2.5) 

with strict inequality for at least one i. 

Theorem 3.2.4 An irreducible üf-matrix is an M-matrix. 

Proof. See [141]. D 

Note that inspection of the if-matrix property is easy. 
The following theorem is helpful in the construction of regular splittings. 

Theorem 3.2.5 Let A be an M-matrix. If M is obtained by replacing certain elements a^ 
with i ^ j by values bi, satisfying a,-,- < &,•/ < 0, then A = M - N is a regular splitting. 
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Proof. This theorem is an easy generalization of Theorem 3.14 in [129] suggested by Theorem 
2.2 in [87]. ° 

The basic iterative methods to be considered all result in regular splittings, and lead to 
numerically stable algorithms, if A is an M-matrix. This is one reason why it is advisable 
to discretize the partial differential equation to be solved in such a way that the resulting 
matrix is an M-matrix. This may require upwind differencing for first derivatives. Another 
reason is the exclusion of numerical wiggles in the computed solution, because a monotonicity 
principle is associated with the M-matrix property. 

3.3    Examples of basic iterative methods: Jacobi and Gauss-Seidel 

We present a number of (mostly) common basic iterative methods by defining the correspond- 
ing splittings (3.1.2). We assume that A arises from a discretization on a two-dimensional 
structured grid. 

Point Jacobi. M = diag (A). 

Block Jacobi. M is obtained from A by replacing a,-j for all i,j with j ^ i,i± 1 by zero. 
With the forward ordering of the grid points of Figure 3.3.1 this gives horizontal line Jacobi; 
with the forward vertical line ordering of Figure 3.3.2 one obtains vertical line Jacobi. One 
horizontal line Jacobi iteration followed by one vertical line Jacobi iteratin gives alternating 
Jacobi. 

16    17    18    19 20 
11    12    13    14 15 

6      7      8      9 10 
12      3      4 5 

Forward 

5      4      3      2 1 
10      9      8      7 6 
15    14    13    12 11 
20    19    18    17 16 

Backward 

18      9    19    10 20 
6    16      7    17 8 

13      4    14      5 15 
1 11 2 12 3 

White-black 

10 14    17    19 20 16    19    17    20    18 
6 9    13    16 18 11    14    12    15    13 
3 5      8    12 15 6      9      7    10      8 
1 2      4      7 11 14      2      5      3 

Diagonal Horizontal forward 
white-black 

17 13      9      5      1 
19 15    11      7      3 
18 14    10      6      2 
20 16    12      8      4 

Vertical backward 
white-black 

Figure 3.3.1: Grid point orderings for point Gauss-Seidel. 

Point Gauss-Seidel. M is obtained from A replacing atj for all i,j with j > i by zero. 
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4 8    12    16 20 16 17    18    19 20 4 16    8    20 12 

3 7    11    15 19 6 7      8      9 10 3 15    7    19 11 

2 6    10    14 18 11 12    13    14 15 2 14    6    18 10 

1 5      9    13 
Forward 

vertical line 

17 1 2      3      4 
Horizontal 

zebra 

5 1 13    5    17 
Vertical 
zebra 

9 

Figure 3.3.2: Grid point orderings for block Gauss-Seidel. 

Block Gauss-Seidel. M is obtained from A by replacing a,ij for all i,j with j > i + 1 by 
zero. 

From Theorem 4.2.8 it is immediately clear that, if A is an M-matrix, then the Jacobi and 
Gauss-seidel methods correspond to regular splittigs. 

Gaus-Seidel variants 
It turns out that the efficiency of Gauss-Seidel methods depends strongly on the ordering of 
equations and unknowns in many applications. Also, the possibilities of vectorized and par- 
allel computing depend strongly on this ordering. We now, therefore, discuss some possible 
orderings. The equations and unknowns are associated in a natural way with points in a 
computational grid. It suffices, therefore, to discuss orderings of computational grid points. 
We restrict ourselves to a two-dimensional grid G, which is enough to illustrate the basic 
ideas. G is defined by 

G = {(i,j):z = l,2,...,J;i=l,2,...,/} (3.3.1) 

The points of G represent either vertices or cell centres, depending on the discretization 
method. 

Forward or lexicographic ordering 
The grid points are numbered as follows 

k = i + (j-l)I (3.3.2) 

Backward ordering 
This ordering corresponds to the enumeration 

k = IJ + l-i-(j-l)I (3.3.3) 
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White-black ordering 
This ordering corresponds to a chessboard colouring of G, numbering first the black points 
and then the white points, or vice versa; cf. Figure 3.3.1. 

Diagonal ordering 
The points are numbered per diagonal, starting in a corner; see Figure 3.3.1. Diferent variants 
are obtained by starting in different corners. If the matrix A corresponds to a discrete oper- 
ator with a stencil as in Figure 3.3.3(b), then point Gauss-Seidel with the diagonal ordering 
of Figure 3.3.1 is mathematically equivalent to forward Gauss-Seidel. 

»■■—-—- ■ i  ....- — ■■■■ — 

i 11.  ■ " i 

(») (b) (c) 

Figure 3.3.3: Discretization stencils. 

Point Gauss-Seidel-Jacobi 
We propose this variant in order to facilitate vectorized and parallel computing; more on this 
shortly. M is obtained from A by replacing a,j by zero except an and a,-)t-_i. We call this 
point Gauss-Seidel-Jacobi because this is a compromise between the point Gauss-Seidel and 
Jacobi methods discussed above. Four different methods are obtained with the following four 
orderings: the forward and backward orderings of Figure 3.3.1, the forward vertical line or- 
dering of Figure 3.3.2, and this last ordering reversed. Applying these methods in succession 
results in four-direction point Gauss-Seidel-Jacobi. 

White-black line Gauss-Seidel 
This can be seen as a mixture of lexicographic and white-black ordering. The concept is best 
illustrated with a few examples. With horizontal forward white-black Gauss-Seidel the grid 
points are visited horizontal line by horizontal line in order of increasing j (forward), while 
per line the grid points are numbered in white-black order, cf. Figure 3.3.1. The lines can also 
be taken in order of decreasing j, resulting in horizontal backward white-black Gaus-Seidel. 
Doing one after the other gives horizontal symmetric white-back Gauss-Seidel. Doing one 
after the other gives horizontal symmetric white-black Gauss-Seidel.  The lines can also be 
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taken vertically; Figure 3.3.1 illustrates vertical backward white-black Gauss-Seidel. Combin- 
ing horizontal and vertical symmetric whte-black Gauss-Seidel gives alternating white-black 
Gauss-Seidel. White-black line Gauss-Seidel ordering has been proposed in [128]. 

Orderings for block Gauss-Seidel 
With block Gauss-Seidel, the unknowns corresponding to lines in the grid are updated simul- 
taneously. Forward and backward horizontal line Gauss-Seidel correspond to the forward and 
backward ordering, respectively, in Figure 3.3.1. Figure 3.3.2 gives some more orderings for 
block Gauss-Seidel. 

Symmetric horizontal line Gauss-Seidel is forward horizontal line Gauss-Seidel followed 
by backward horizontal line Gauss-Seidel, or vice versa.Alternating zebra Gauss-Seidel is 
horizontal zebra followed by vertical zebra Gauss-Seidel, or vice versa. Other combinations 
come to mind easily. 

Vectorized and parallel computing 
The basic iterative methods discussed above differ in their suitability for computing with 
vector or parallel machines. Since the updated quantities are mutually independent, Jacobi 
parallizes and vectorizes completely, with vector length I * J. If the structure of the stencil 
[A] is as in Figure 3.3.3(c), then with zebra Gauss-Seidel the updated blocks are mutually 
independent, and can be handled simultaneously on a vector or a parallel machine. The 
same is true for point Gauss-Seidel if one chooses a suitable four-colour ordering scheme. 
The vector length for horizontal or vertical zebra Gauss-Seidel is J or I, respectively. The 
white and black groups in white-black Gauss-Seidel are mutually independent if the structure 
of [A] is given by Figure 3.3.4. The vector length is 7 * J/2. With diagonal Gauss-Seidel, 
the points inside a diagonal are mutually independent if the structure of [A] is given by 
Figure 3.3.3(b), if the diagonals are chosen as in Figure 3.3.1. The same is true when [A] 
has the structure given in Figure 3.3.3(a), if the diagonals are rotated by 90°. The average 
vector length is roughly 7/2 or J/2, depending on the length of largest the diagonal in the 
grid. With Gauss-Seidel-Jacobi lines in the grid can be handled in parallel; for example, with 
the forward ordering of Figure 3.3.1 the points on vertical lines Gauss-Seidel points of the 
same colour can be updated simultaneously, resulting in a vector length of J/2 or J/2, as the 
case may be. 

Exercise 3.3.1 Let A = L + D + U, with Uj = 0 for j > i, D - diag (A), and u^ — 0 for 
j > i. Show that the iteration matrix of symmetric point Gauss-Seidel is given by 

S = (U + D)-1L(L + D)~1U (3.3.4) 

Exercise 3.3.2 Prove Theorem 3.3.1. 
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Figure 3.3.4: Five-point stencil. 

3.4    Examples of basic iterative methods:  incomplete point LU factoriza- 
tion 

Complete LU factorization 
When solving Ay = b directly, a factorization A = LU is constructed, with L and U a lower 
and an upper triangular matrix. This we call complete factorization. When A represents a 
discrete operator with stencil structure, for example, as in Figure 3.3.3, then L and U turn 
out to be much less sparse than A, which renders this method inefficient for the class of 
problems under consideration. 

Incomplete point factorization 
With incomplete factorization or incomplete LU factorization (ILU) one generates a splitting 
A = M - N with M having sparse and easy to compute lower and upper triangular factors 
L and U: 

M = LU (3.4.1) 

If A is symmetric one chooses a symmetric factorization: 

M = LLT (3.4.2) 

An alternative factorization of M is 

M = LD~lU (3.4.3) 

With incomplete point factorization, D is chosen to be a diagonal matrix, and diag (L) = 
diag (U) = D, so that (3.4.3) and (3.4.1) are equivalent. L,D and U are determined as 
follows. A graph Q of the incomplete decomposition is defined, consisting of two-tuples (i,j) 
for which the elements kj,da and Uij ae allowed to be non-zero. Then L, D and U are defined 

by 
{LD~lU)kl = akU   V(k,l)eg (3.4.4) 

We will discuss a few variants of ILU factorization. These result in a splitting A = M - N 
with M = LD~XU.  Modified incomplete point factorization is obtained if D is defined by 
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(3.4.4) is changed to D + aD, with a G M a parameter, and D a diagonal matrix defined 
by dkk = H \nu\- From now on the modified version will be discussed, since the unmodified 

version follows as a special case. This or similar modifications have been investigated in the 
context of multigrid methods in [65], [97], [83], [82] and [145], [147]. A srvey is given in [142]. 

We will discuss a few variants of modified ILU factorization. 

Five-point ILU 
Let the grid be given by (3.3.1), let the grid points be ordered according to (3.3.2), and let 

the structure of the stencil be given by Figure 3.3.3. Then the graph of A is 

Q = {(*, k - /), (k, k - 1), (*, *), (*, k + 1), (*, k + I)} (3.4.5) 

For brevity the following notation is introduced 

dk = ak,k-l,-Ck = ak,k-i, dk = a-kk, Qk = Ofc,fc+i5 9k = ak,k+I (3.4.6) 

Let the graph of the incomplete factorization be given by (3.4.5), and let the non-zero elements 
of L,D and U be called ak,jk,h,^k and %; the locations of these elements are identical 
to those of ak,...,gk, respectively. Because the graph contains five elements, the resulting 
method is called five-point ILU. Let a, ...,T/ be the IJ * IJ matrices with elements ak, ...,Vk, 

respectively, and similarly for a, ...,g. Then one can write 

LD^U = a + j + 6 + fi + t] + aS-1^ + aS'1!] + -yS^fj, + 7^_1r/ (3.4.7) 

From (3.4.4) it follows 
a = a,   7 = c,   fi = q,   rj = g (3.4.8) 

and, introducing modification as described above, 

S + a6-1g + cS-1g = d + ad (3.4.9) 

The rest matrix N is given by 

N = a6-1q + c6-1g + ad (3.4.10) 

The only non-zero entries of iV are 

nk,k-l+i    =   afc^fci/%-7,    nk,k+i-i = CkS^gk-i (3.4.11) 
rtkk    =   (T(\nklk-l+i\ + |rajfe,fc+J-i|) 

Here and in the following elements in which indices outside the range [1,//] occur are to be 

replaced by zero. From (3.4.9) the following recursion is obtained: 

Sk = dk- ak6kli9k-l - Ck^k-i9k-i + nkk (3.4.12) 
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This factorization has been studied in [41]. 
From (3.4.12) it follows that a can overwrite d, so that the only additional storage required 
is for N. When required, the residual b - Aym+l can be computed as follows without using 
A: 

b - Aym+1 = N(ym+1 - y) (3.4.13) 

which follows easily from (3.1.3). Since N is usually more sparse than A, (3.4.13) is a cheap 
way to compute the residual. For all methods of type (3.1.3) one needs to store only M and 
N, and A can be overwritten. 

Seven-point ILU 
The terminology seven-point IL U indicates that the graph of the incomplete factorization has 
seven elements. The graph Q is chosen as follows: 

Q = {(*, k ± /), (k, k ± / T 1), (*, k ± 1), (*, *)} (3.4.14) 

For the computation of L,D and U see [141]. L,DandU can overwrite A. The only 
additional storage required is for N. Or, if one prefers, elements of N can be computed when 
needed. 

Nine-point ILU 
The principles are the same as for five- and seven-point ILU. Now the graph Q has nine 
elements, chosen as follows 

g = Q1\j{(k,k±I±l)} (3.4.15) 

with Qi given by (3.4.14). 
For the computation of L, D and U see [141]. 

Alternating ILU 
Alternating ILU consists of one ILU iteration of the type just discussed or similar, followed 
by a second ILU iteration based on a different ordering of the grid points. As an example, let 
the grid be defined by (3.3.1), and let the grid points be numbered according to 

k=JJ + l-j-(i-l)J (3.4.16) 

This ordering is illustrated in Figure 3.4.1, and will be called here the second backward or- 
dering, to distinguish it from the backward ordering defined by (3.3.3). The ordering (3.4.16) 
will turn out to be preferable in applications to be discussed later. The computation of the 
corresponding incomplete factorization factors L, D and Ü is discussed in [141]. If alternating 
ILU is used, L,D and U are already stored in the place of A, so that additional storage is 
required for L, D and Ü. N can be stored, or is easily computed, as one prefers. 

21 



17 13 9 5 1 
18 14 10 6 2 
19 15 11 7 3 
20 16 12 8 4 

Figure 3.4.1: Illustration of second backward ordering. 

General ILU 
Other ILU variant are obtained for other choices of Q. See [88] for some possibilities. In 
general it is advisable to choose Q equal to or slightly larger than the graph of A. If Q is 
smaller that the graph of A then nothing changes in the algorithms just presented, except 
that the elements of A outside Q are subtracted from N. 

The following algorithm computes an ILU factorization for general Q by incomplete Gauss 
elimination. A is an n x n matrix. We choose diag (L) = diag (U). 

Algorithm 1. Incomplete Gauss elimination 

A°:=A 
for r := 1 step 1 until n do 
begin    ar

rr := sqrt  (a^"1) 
for j > r A (r,j) <E Q do ar

rj := a^/a^ 
for i > r A (i,r) £ Q do aT

ir := a[r
-1/arr 

for (i,j) e G A i > r A j > r A (i,r) e G A (r,j) 6 G do 

od od od 
end of algorithm 1. 

An contains L and U. In [57] one finds an algorithm for the LD~XU version of ILU, for 
arbitrary G- See [143] and [138] for applications of ILU with a fairly complicated G (Navier- 
Stokes equations in the vorticity-stream function formulation). 

Final remarks 
Existence of ILU factorizations and numerical stability of the associated algorithms has been 
proved in [87] if A is an M-matrix; it is also shown that the associated splitting is regular, so 
that ILU converges according to Theorem 4.2.3. For information on efficient implementations 
of ILU on vector and parallel computers, see [69], [68], [116], [117], [118], [119], [103] and [14]. 
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Exercise 4.4.1 Derive algorithms to compute symmetric ILU factorizations A 
N and A = LLT — N for A symmetric. See [87]. 

LD^L1 - 

Exercise 4.4.2 Let A = L + D + U, with D — diag (A), /,-_,- = 0, j > i and n^ = 0, j < i. 
Show that (3.4.3) results in symmetric point Gauss-Seidel (cf. Exercise 3.3.1). This shows 
that symmetric point Gauss-Seidel is a special instance of incomplete point factorization. 

3.5    Examples of basic iterative methods:  incomplete block LU factoriza- 
tion 

Complete line LU factorization 
The basic idea of incomplete block LU-factorization (IBLXJ) (also called incomplete line LU- 
factorization (ILLU) in the literature) is presented by means of the following example. Let 
the stencil of the difference equations to be solved be given by Figure 3.3.3(c). The grid point 
ordering is given by (3.3.2). Then the matrix A of the system to be solved is as follows: 

\ 

(3.5.1) 

( B, Ut 

L2 

\ 

B2 u2 

Lj Bj 

with Lj,Bj and Uj I x I tridiagonal matrices. 
First, we show that there is a matrix D such that 

where 

L   = 

D   = 

(   0 

\ 
( DX 

A = (L + D)D~1(D + U) 

Lj   0 j 

D2 

Dj ) 

U = 

( o  u1 

0 

V 

(3.5.2) 

Uj-! 
0 

(3.5.,3) 
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We call (3.5.2 a line LU factorization of A, because the blocks in L, D and U correspond to 
(in our case horizontal) lines in the computational grid. From (3.5.2) it follows that 

A = L + D + U + LD~1U 

One finds that LD~XU is the following block-diagonal matrix 

/0 

LD~XU = 

(3.5.4) 

L2D^Ul 

\ 

(3.5.5) 

LJDJL.UJ., J 

From (3.5.4) and (3.5.5) the following recursion to compute D is obtained 

£>! = B1 ,   Dj = Bj - LjDj^ Uj,   j = 2,3,..., J 

Provided DJ1 exists, this shows that one can find D such that (3.5.2) holds. 

(3.5.6) 

Nine-point IBLU 
The matrices Dj are full; therefore incomplete variants of (3.5.2) have been proposed. An 
incomplete variant is obtained by replacing LjDJ^Uj in (3.5.6) by its tridiagonal part (i.e. 
replacing all elements with indices i, m with m ^ i, i ± 1 by zero): 

JDI = B\.,    Dj = Bj - tridiag {LjDj_xUj) 

The IBLU factorization of A is defined as 

i/^> A = (L + D)D    (D + U)-N 

(3.5.7) 

(3.5.8) 

There are three non-zero elements per row in L, D and U; thus we call this nine-point IBLU. 
^-i 

For an algorithm to compute D and D     see [141]. 

The IBLU iterative method 
With IBLU, the basic iterative method (3.1.3) becomes 

r = b - Aym 

"—1 / •£»   ■   n\    m+1 

:=» +ym 

Equation (3.5.10) is solved as follows 

Solve (L + D)ym+1 = r 

(L + D)D \D + U)y* 
m+l  .      m+1 

(3.5.9) 

(3.5.10) 

(3.5.11) 

(3.5.12) 
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r := Dym+1 (3.5.13) 

Solve (D + L)yn+1 = r (3.5.14) 

With the block partioning used before, and with yj and TJ denoting /-dimensional vectors 
corresponding to block j, Equation (3.5.12) is solved as follows: 

Diy?+1=ri,    bj^+^rj-Lj^yJ^   j = 2,3,...,/ (3.5.15) 

Equation (3.5.14) is solved in a similar fashion. 

Other IBLU variants 
Other IBLU variants are obtained by taking other graphs for L,b and U. When A corre- 
sponds to the five-point stencil of Figure 3.3.3, L and U are diagonal matrices, resulting in the 
five-point IBLU variants. When A corresponds to the seven-point stencils of Figure 3.3.3(a), 
(b), L and U are bidiagonal, resulting in seven-point IBLU. There are also other possibilities 

to approximate LjD:_1Uj by a sparse matrix. See [6], [33], [7], [99], [107] for other versions 
of IBLU; the first three publications also give existence proofs for bj if A is an M-matrix; this 
condition is slightly weakened in [99]. Vectorization and parallelization aspects are discused 
in [7]. 

Exercise 3.5.1 Derive an algorithm to compute a symmetric IBLU factorization A = 
(L + D)b~l(b + LT)- N for A symmetric. See [33]. 

3.6    Some methods for non-M-matrices 

When non-self-adjoint partial differential equations are discretized it my happen that the 
resulting matrix A is not an M-matrix. This depends on the type of discretization and 
the values of the coefficients. Examples of other applications leading to non-M-matrix dis- 
cretizations are the biharmonic equation and the Stokes and Navier-Stokes equations of fluid 
dynamics. 

Defect correction 
Defect correction can be used when one has a second-order accurate discretization with a 
matrix A that is not an M-matrix, and a first-order discretization with a matrix B which is 
an M-matrix, for example because B is obtained with upwind discretization, or because B 
contains artificial viscosity. Then one can obtain second-order results as follows. 

Algorithm 1. Defect correction 
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begin    Solve By — b 
for i    := 1 step 1 until n do 

By    = b-Ay + By 

y   -=y 
od 

end of algorithm 1. 

It suffices in practice to take n = 1 or 2. For simple problems it can be shown that for n = 1 
already y has second-order accuracy. B is an M-matrix; thus the methods discussed before 
can be used to solve for y. 

Distributive iteration 
Instead of solving Ay = b one may also solve 

ABy = b,   y = By (3.6.1) 

This may be called post-conditioning, in analogy with preconditioning, where one solves 
BAy = Bb. B is chosen such that AB is an M-matrix or a small perturbation of an 
M-matrix, such that the splitting 

AB = M-N (3.6.2) 

leads to a convergent iteration method.  From (3.6.2) follows the following splitting for the 
original matrix A 

A = MB~l -NB"1 (3.6.3) 

This leads to the following iteration method 

MB~lym+l = NB~lym + b (3.6.4) 

or 
ym-i =ym + BM-\b - Aym) (3.6.5) 

The iteration method is based on (3.6.3) rather that on (3.6.2), because if M is modified so 
that (3.6.2) does not hold, then, obviously, (3.6.5) still converges to the right solution, if it 
converges. Such modifications of M occur in applications of post-conditioned iteration to the 
Stokes and Navier-Stokes equations. 

Iteration method (3.6.4) is called distributive iteration, because the correction M~x(6 - 
Aym) is distributed over the elements of y by the matrix B. A general treatment of this 
approach is given in [144], [146], [148], [150], [149], where it is shown that a number of well 
known iterative methods for the Stokes and Navier-Stokes equations can be interpreted as 
distributive iteration methods. 
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Taking B = AT and choosing (3.6.2) to be the Gauss-Seidel or Jacobi splitting results in 
the Kaczmarz [78] or Cimmino [32] methods, respectively. These methods converge for every 
regular A, because Gauss-Seidel and Jacobi converge for symmetric positive definite matrices 
(a proof of this elementary result may be found in [70]. Convergence is, however, usually 
slow. 

4    Smoothing analysis 

4.1 Introduction 

The convergence behaviour of a multigrid algorithm depends strongly on he smoother. The 
efficiency of smoothing methods is problem-dependent. When a smoother is efficient for a 
large class of problems it is called robust. This concept will be made more precise shortly 
for a certain class of problems. Not every convergent method has the smoothing property, 
but for symmetric matrices it can be shown that by the introduction of suitable amount of 
damping every convergent method acquires the smoothing property. This property says little 
about the actual efficiency. A convenient tool for the study of smoothing efficiency is Fourier 
analysis, which is also easily applied to the non-symmetric case. Fourier smoothing analysis 
is the main topic of this chapter. 

Many different smoothing methods are employed by users of multigrid methods. Of course, 
in order to explain the basic principles of smoothing analysis it suffices to discuss only a few 
methods by way of illustration. To facilitate the making of a good choice of a smoothing 
method for a particular application it is, however, useful to gather smoothing analysis results 
which are scattered through the literature in one place, and to complete the information 
where results for important cases are lacking. 

4.2 The smoothing property 

The smoothing method is assumed to be a basic iterative method as defined by (3.1.3). We 
will assume that A is a üf-matrix. Often, the smoother is obtained in the way described in 
Theorem 3.2.5; in practice one rarely encounters anything else. 

The smoothing property is defined as follows ([57]): 

Definition 4.2.1 Smoothing property. S has the smoothing property if there exist a 
constant Cs and a function 7]{y) independent of the mesh-size h such that 

\\ASu\\<Csh-2mn{v),   t/(i/)-> 0   for   v -► oo (4.2.1) 

where 2m is the order of the partial differential equation to be solved. 
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Here 5 is the iteration matrix defined by (3.1.5). The smoothing property implies converse 
[141] but, as already remarked, the converse is not true. In [145] it is shown that a convergent 
method can be turned into a smoother by damping; for a fuller discussion see [141]. 

Discussion 
In [57] the smoothing property is shown for a number of iterative methods. The smooth- 
ing property of incomplete factorization methods is studied in [145], [147]. Non-symmetric 
problems can be handled by perturbation arguments, as indicated by [57]. When the non- 
symmetric part is dominant, however, as in singular perturbation problems, this does not 
lead to useful results. Fourier smoothing analysis (which, however, also has its limitations) 
can handle the non-symmetric case easily, and also provides an easy way to optimize values 
of damping parameters and to predict smoothing efficiency. The introduction of damping 
does not necessarily give a robust smoother. The differential equation may contain a param- 
eter, such that when it tends to a certain limit, smoothing efficiency deteriorates. Examples 
and further discussion of robustness will follow. We will concentrate on Fourier smoothing 
analysis. 

4.3    Elements of Fourier analysis in grid-function space 

As preparation we start with the one-dimensional case. 

The one-dimensional case 

Theorem 4.3.1. Discrete Fourier transform. Let / = {0,1,2, ...,n-l}. Every u : I -> M 
can be written as 

m+p 

u=   ^2  CkWk),   i>j{9k) = exp{ij0k),    ek = 2Trk/n,   jel (4.3.1) 
k=—m 

where p = 0, m = (n - l)/2 for n odd and p = 1, m = n/2 - 1 for n even, and 

ck = n-1YtUj1>i(-0k) (4.3.2) 
3=0 

The functions if}(0) are called Fourier modes or Fourier components. For a proof of this 
elementary theorem see [141]. 

The multi-dimensional case 
Define 

i>j{9) = exp(ij9) (4.3.3) 
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with j e I, 9 6 ©, with 

I = {j -j = (J1J2, -,3d), ja = 0,1,2, ...,n y       1,0;: = l,2,...,d}             (4.3 •4) 

■ 9 = {9 : 0 = (0!, fl2,..., 0d), 6a = 2nka/not, 

ka = -ma,-ma + l,...,ma + pa, a i = l,2,.. .,d}                         (4.3 .5) 

where pa = 0,  ma = (na - l)/2 for na odd and pa = 
Furthermore, 

d 

j9 - ^2 Jo^a 
a=l 

: 1,  ma = na/2 - 1 for na even. 

(4.3 .6) 

Theorem 4.3.2. Discrete Fourier transform in d d 
be written as 

ui = J2 c*V>i(0) 
06© 

imensions. Every u : I —► JR can 

(4.3.7) 

with 
d 

C0 = AT1 5>;^-(-0), # = n n<* 
a=\ 

(4.3 .8) 

For a proof see [141]. 

The Fourier series (4.3.7) is appropriate for d-dimensional vertex- or cell-centered grids with 
periodic boundary conditions.  For the use of Fourier sine or cosine series to accommodate 
Dirichlet or Neumann conditions, see [141]. 

4.4    The Fourier smoothing factor 

Definition of the local mode smoothing factor 
Let the problem to be solved on grid G be denoted by 

Au = f (4.4 •1) 

and let the smoothing method to be used be given by (3. 1.6): 

w:=5u+M-1/,    S, = M"1iV, M-N = A                        (4.4 .2) 

According to (3.2.1) the relation between the error before and after v smoothing iterations is 

e1 = S"e° (4.4 .3) 

We now make the following assumption. 
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Assumption (i). The operator S has a complete set of eigenfunctions or local modes denoted 
by rp(6), 9 € 0, with 0 some discrete index set. 

Hence 
Svi>{9) = \l/{9)^{9) (4.4.4) 

with \(9) the eigenvalue belonging to ip(6). we can write 

e" = £<£#?),    a = 0,1 

and obtain 
4 = \v{9)c°e (4.4.5) 

The eigenvalue X(0) is also called the amplification factor of the local mode ip(9). 
Next, assume that among the eigenfunctions tp(6) we somehow distinguish between smooth 
eigenfunctions (0 € Qs) and rough eigenfunctions (9 € 0r): 

0 = 0sU0r,    0sn0r = 0 (4.4.6) 

We now make the following definition. 

Definition 4.4.1. Local mode smoothing factor. The local mode smoothing factor p of 
the smoothing method (4.4.2) is defined by 

p = sup{\\(6)\ :9eer} (4.4.7) 

Hence, after v smoothings the amplitude of the rough components of the error are multiplied 
by a factor pu or smaller. 

Fourier smoothing analysis 
In order to obtain from this analysis a useful tool for examining the quality of smooth- 
ing methods we must be able to easily determine p, and to choose Qs such that an error 
e = ip(9), 9 6 ©s is well reduced by coarse grid correction. This can be done if Assumption 
(ii) is satisfied. 

Assumption (ii). The eigenfunctions ip(0) of S are harmonic functions. 

This assumption means that the series preceding (4.4.5) is a Fourier series. When this is so 
p is also called the Fourier smoothing factor. In the next section we will give conditions such 
that Assumption (ii) holds, and show how p is easily determined; but first we discuss the 
choice of 0r. 
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Aliasing 
Consider the vertex-centered grid G given by (4.4.8) with na even, and the corresponding 
coarse grid G defined by doubling the mesh-size: 

G = {x e Md :x = jh, j   =   (ji,J2,-Jd), h = (hi,h2,...,hd), 

ja = 0,l,2,...,na, ha = l/na, a = l,2,...,d}   (4.4.8) 

G= {x e Md :x= jh, j   =   (ji,J2,--,Jd),h = (h1,h2,...,hd), 

ja = 0,l,2,...,na, ha = l/na, a = 1,2, ...,d}   (4.4.9) 

with na = na/2. Let d = 1, and assume that the eigenfunctions of S on the fine grid G are 
the Fourier modes of Theorem 4.3.1: tpj(O) = exp(ijö), with 

0 e@ = {6:Q = 2irk/ni, k = -m/2 + 1, -n1/2 + 2,...,n1/2} (4.4.10) 

so that an arbitrary grid function v on G can be represented by the following Fourier series 

An arbitrary grid function v on G can be represented by 

*i = E^#) (4-4-12) 
see 

with #(0) :G^R, $$) = exp(ij0), and 

0 = {9 : 0 = 2vk/nu k = -na/2 + 1, -na/2 + 2,..., na/2} (4.4.13) 

assuming for simplicity that n\ is even. The coarse grid point Xj — jh coincides with the fine 
grid point x2j = 2jh. In these points the coarse grid Fourier mode V>(0) takes on the value 

ij>j(Ö) = exp(ij0) = exp(i2j0) (4.4.14) 

For —ni/4+ 1 < k < ni/4 the fine grid Fourier mode i>{6k) takes on in the coarse grid points 
Xj the values of ip2j{0k) = exp(2irijk/ni) = ij)j(2irk/ni), and we see that it coincides with 
the coarse grid mode i>{0k) in the coarse grid points. But this is also the case for another fine 
grid mode. Define k  as follows 

0<&<ni/2:    k' = -n1/2 + k , . 
-n1/2<k<0:    k' = ni/2 + k [ ' '    ' 
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Then the fine grid Fourier mode i){0k>) also coincides with i>(0k) in the coarse grid points. 
On the coarse grid, VCfy) cannot be distinguished from i})(9k). This is called aliasing: the 
rapidly varying function i>(0k') takes on the appearance of the much smoother function ip(6k) 

on the coarse grid. 

Smooth and rough Fourier modes 
Because on the coarse grid G the rapidly varying function i>{9k>) cannot be approximated, 
and cannot be distinguished from ^(9k), where is no hope that the part of the error which 
consists of Fourier modes i>{Oki), k' given by (4.4.15), can be approximated on the coarse 
grid G. This part of the error is called rough or non-smooth. The rough Fourier modes are 
defined to be ip(9k>), with k' given by (4.4.15), that is 

Jfe'e{-ni/2+l, -ni/2 + 2,..., -TH/4} U {m/4, «i/4 + 1, ...,na/2} (4.4.16) 

This gives us the set of rough wavenumbers 0r = {0 : 9 = 2ivk'/ni : k' according to (4.4.16)}, 

or 

0r = {9:0 = 2rk/ni, k = -ni/2+1, -ni/2 + 2, ...,na/2 

and  9 € [-TT, -TT/2] U [TT/2, TT]} (4.4.17) 

The set of smooth wavenumbers 0S is defined as Qs = 0\©r, 0 given by (4.4.10) with d = 1, 
or 

0S = {9:6 = 2nk/n1, k = -m/2+1, -»i/2 + 2, ...,m/2 

and Ö G (-TT/2, TT/2)} (4.4.18) 

The smooth and rough parts us and vr of a grid function v : G -*■ iR can now be defined 
precisely by 

0e@s „-! 960r (4.4.19) 
ce = nx 

a E Vj1>j(-0) 
3=0 

In d dimensions the generalization of (4.4.17) and (4.4.18) (periodic boundary conditions) is 

Q = {9:0 = (91,92,...,Od),    0a = 2vka/na,   ka = -na/2+ 1, ...,na/2} 

d (4.4.20) 
0S = 0 n n (-T/2, TT/2),   0r = 0 \ 0S 
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-7C 

Figure 4.4.1:  Smooth (0S) and rough (0r, hatched) wavenumber sets in two dimensions, 
standard coarsering. 

Figure 4.4.1 gives a graphical illustration of the smooth and rough wavenumber sets 
(4.4.20) for d = 2. 0r and @s are discrete sets in the two concentric squares. As the 
mesh-size is decreased (na is increased) these discrete sets become more densely distributed. 

Semi-coarsening 
The above definition of 0r and 0S in two dimensions is appropriate for standard coarsening, 
i.e. G is obtained from G by doubling the mesh-size ha in all directions a = 1,2, ...,d. 
With semi-coarsering there is at least one direction in which ha in G is the same as in G. 
Of course, in this direction no aliasing occurs, and all Fourier modes on G in this direction 
can be resolved on G, so hey are not included in 0r. To give an example in two dimensions, 
assume hi = hi (semi-coarsering in the a^-direction). Then (4.4.20) is replaced by 

0, =" 0 fl {[-JT, 7T] X (-7T/2, TT/2)},     0S = 0 \ 0S 

Figure 4.4.2 gives a graphical illustration. 

(4.4.21) 

Mesh-size independent definition of smoothing factor 
We have a smoothing method on the grid G if uniformly in na there exists a p* such that 

P < P* < 1,    Vn0 a 1,2,...,d (4.4.22) 

However, p as defined by (4.4.7) depends on na, because 0r depends on na.   In order to 
obtain a mesh-independent condition which implies (4.4.23) we define a set 0r D 0r with 0r 
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Figure 4.4.2:  Smooth (0S) and rough (0,-, hatched) wavenumber sets in two dimensions, 
semi-coarsening in x2 direction. 

independent of na and define 

so that 

p = sup{\\(6)\ :0e®r} (4.4.23) 

P < P (4-4.24) 

and we have a smoothing method if p < 1. For example, if Qr is defined by (4.4.20), then we 
may define 0r as follows: 

0r=nt-7r'7r]\ 11(^/2^/2) (4.4.25) 
a=l a=l 

This type of Fourier analysis, and definition (4.4.23) of the smoothing factor, have been 
introduced by Brandt (1977). It may happen that X(6) still depends on the mesh-size, in 
which case p is not really independent of the mesh-size, of course. 

Modification of smoothing factor for Dirichlet boundary conditions 
If X(0) is smooth, then p- p = 0(h%) for some m > 1. It may, however, happen that there 
is a parameter in the differential equation, say e, such that for example p - p = 0{h2

als). 
Then, for e < 1 (singular perturbation problems), for practical values of ha there may be 
a large difference between p and p. Even if p = 1, one may still have a good smoother. 
Large discrepancies between predictions based on p and practical observations may occur 
for singular perturbation problems when the boundary conditions are not periodic. It turns 
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out that discrepancies due to the fact that the boundary conditions are not of the assumed 
type arise mainly from the presence or absence of wavenumber components 0a = 0 (present 
with periodic boundary conditions, absent with Dirichlet boundary conditions). It has been 
observed [29], [83], [147] that when using the exponential Fourier series (4.3.7) for smoothing 
analysis of a practical case with Dirichlet boundary conditions, often better agreement with 
practical results is obtained by leaving wavenumbers with 6a = 0 out, changing the definition 
of 0r in (4.4.7) from (4.4.20) to 

®D = {0:0 = (0u02,...,0d),   6a = 2Kka/na,    ka^0,   ka = -n«/2 + 1, ...,na/2} 

e? = eD n n (-*/2, */2), e? = eD\ e? (4.4.26) 

where the superscript D serves to indicate the case of Dirichlet boundary conditions. The 
smoothing factor is now defined as 

PD = suP{\X(9)\ : 0 e 0?} (4.4.27) 

Figure 4.4.3 gives an illustration of 0^, which is a discrete set within the hatched region, for 
d = 2. Further support for the usefulness of definitions (4.4.26) and (4.4.27) will be given in 
the next section. 
Notice that we have the following inequality 

PD<P<P (4-4.28) 

If we have a Neumann boundary condition at both xa = 0 and xa = 1, then 0a = 0 cannot 
be excluded, but if one has for example Dirichlet at xa = 0 and Neumann at xa = 1 then the 
error cannot contain a constant mode in the xa direction, and 0a = 0 can again be excluded. 

Exercise 4.4.1 Suppose hi = fih\ (h\ : mesh-size of G, hi : mesh-size of G, one-dimensional 
case, fj, some integer), and assume periodic boundary conditions. Show that we have aliasing 
for 

0k = 2irk/n1,    k G 7L n {(-ni/2, -ni/2/i] U [ni/2^ni/2]} 

and define sets 0r,0s. 

4.5    Fourier smoothing analysis 

Explicit expression for the amplification factor 
In order to determine the smoothing factor p,p or po according to definitions (4.4.7), (4.4.23) 
and (4.4.27) we have to solve the eigenvalue problem Stp(0) = X(0)tp(9) with S given by 
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6i 

Figure 4.4.3: Rough wavenumber set (6^, hatched) in two dimensions, with exclusion of 
0a = 0 modes; standard coarsening. 

(4.4.2). Hence, we have to solve Nt()(9) = \{e)M^{6). In stencil notation (to be more fully 
discussed later) this becomes, in d dimensions, 

£  N(m,j)i>m+j(6) = \(6)  £  M(m,j)1>m+j(6),   m e Zd (4.5.1) 

je%d JeZd 

with Z = {0,±1,±2,...}. 
We now assume the following. 

Assumption (i). M(m,j) and N(m,j) do not depend on m. 

This assumption is satisfied if the coefficients in the partial differential equation to be solved 
are constant, the mesh-size of G is uniform and the boundary conditions are periodic. We write 
M(j),N(j) instead of M(m,j),N(m,j). As a consequence of Assumption (i), Assumption 
(ii) of Section 4.4 is satisfied: the eigenfunctions of 5 are given by (4.3.3), since 

^  N(j)exp{i(j + m)0] = exp(im0)  £  N(j)exp(ij0) 

jeZd jeZd 

so that ipm(9) = exp(im6) satisfies (4.5.1) with 

A(0) =   53  N(j)exp(ij0)/ J2  M(j)exp(ij6) 

jeZd jeZd 

(4.5.2) 
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Periodicity requieres that ex-p(ima0a) = exp[i(ma + na)6a], or exp(ina6a) = 1. Hence 0 G 0, 
as defined by (4.3.5), assuming na to be even. Hence, the eigenfunctions are the Fourier 
modes of Theorem 4.3.2. 

Variable coefficients, robustness of smoother 
In general the coefficients of the partial differential equation to be solved will be variable, of 
course. Hence Assumption (i) will not be satisfied. The assumption of uniform mesh-size is 
less demanding, because ofen the computational grid G is a boundary fitted grid, obtained 
by a mapping from the physical space and is constructed such that G is rectangular and 
has uniform mesh size. This facilitates the implementation of the boundary conditions and 
of a multigrid code. For the purpose of Fourier smoothing analysis the coefficients M(m, j) 
and N(m,j) are locally 'frozen'. We may expect to have a good smoother if p < 1 for all 
values M(j),N(j) that occur. This is supported by theoretical arguments advanced in [57], 
Section 8.2.2. 

A smoother is called robust if it works for a large class of problems. Robustness is a 
quantitative property, which can be defined more precisely once a set of suitable test problems 
has been defined. 

Test problems 
In order to investigate and compare efficiency and robustness of smoothing methods the 
following two special cases in two dimensions are useful 

- {ec2 + s2)u>n - 2(e - l)csu<12 - (es2 + c2)u>22 = 0 (4.5.3) 

- e(uiU + ut22) + «J,I + sut2 = 0 (4.5.4) 

with c = cos/3, 5 = sin/3. There are two constant parameters to be varied: e > 0 and ß. 
Equation (4.5.3) is called the rotated anisotropic diffusion equation, because it is obtained by 
a rotation of the coordinate axes over an angle ß from the anisotropic diffusion equation: 

£«,ii - «22 = s (4.5.5) 

Equation (4.5.3) models not only anisotropic diffusion, but also variation of mesh aspect ratio, 
because with ß = 0,£ = 1 and mesh aspect ration /11//12 = S-1^2 discretization results in the 
same stencil as with e = 6, /ii//i2 = 1 apart from a scale factor. With ß ^ kn/2, k = 0,1,2,3, 
(4.5.3) also brings in a mixed derivative, which may arise in practice because of the use of non- 
orthogonal boundary-fitted coordinates. Equation (4.5.4) is the convection-diffusion equation. 
It is not self-adjoint. For e <C 1 it is a singular perturbation problem, and is almost hyper- 
bobc. HyperboUc, almost hyperbolic and convection-dominated problems are common in fluid 
dynamics. 
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Equations (4.5.3) and (4.5.4) are not only useful for testing smoothing methods, but also 
for testing complete multigrid algorithms. General (as opposed to Fourier analysis) multigrid 
convergence theory is not uniform in the coefficients of the differential equation, and the the- 
oretical rate of convergence is not bounded away from 1 as e J, 0 or e —»■ oo. In the absence 
of theoretical justification, one has to resort to numerical experiments to validate a method, 
and equations (4.5.3) and (4.5.4) constitute a set of discriminating test problems. 

Finite difference discretization results in the following stencil for (4.5.3), assuming hi = 
hi = h and multiplying by h2: 

[A] = (ec2 + s2)[-l 2   -1] 

1 -1 0 " -1 

+   (e- -l)cs -1 2 -1 + (es2 + c2) 2 
0 -1 1 -1 

0 1 -1 
1 -2 1 
1 1 0 

(4.5.6) 

The matrix corresponding to this stencil is not a ÜT-matrix (see Definition 3.2.6) if e — l)cs > 0. 
If that is the case one can replace the stencil for the mixed derivative by 

(4.5.7) 

We will not, however use (4.5.7) in what follows. 

A more symmetric stencil for [A] is obtained if the mixed derivative is approximated by 
the average of the stencil employed in (4.5.6) and (4.5.7), namely 

(4.5.8) 

Note that for [A] in (4.5.6) to correspond to a /if-matrix it is also necessary that 

ec2 + s2 + (e - l)cs > 0   and   es2 + c2 + (e - l)cs > 0 (4.5.9) 

This condition will be violated if e differs enough from 1 for certain values of c = cos ß, s = sin ß. 
With (4.5.8) there are always (if (s- l)cs ^ 0) positive off-diagonal elements, so that we never 
have a if-matrix. On the other hand, the 'wrong' elements are a factor 1/2 smaller than with 
the other two options. Smoothing analysis will show which of these variants lend themselves 
most for multigrid solution methods. 

1 
2 

1    0 -1 
0   0 0 

-1   0 1 
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Finite difference discretization results in the following stencil for (4.5.4), with h\ 
and multiplying by h2: 

[A] 
-1 

4   -1 
-1 

+ c*[_l <,!] + ,£ 

ho = h 

(4.5.10) 

In (4.5.10) central differences have been used to discretize the convection terms in (4.5.4). 
With upwind differences we obtain 

[A] -1 
-1 
4 

-1 

L 

+ ^[-c-\c\ 2|c| c-\c\] 

h 
+    2 

s — \s\ 
2\s\ 

—s — \s\ 
(4.5.11) 

Stencil (4.5.10) gives a if-matrix only if the well known conditions on the mesh Peclet numbers 
are fulfilled: 

\c\h/s < 2,    \s\h/e < 2 (4.5.12) 

Stencil (4.5.11) always results in a if-matrix, which is the main motivation for using up- 
wind differences. Often, in applications (for example, fluid dynamics) conditions (4.5.12) are 
violated, and discretization (4.5.10) is hard to handle with multigrid methods; therefore dis- 
cretization (4.5.11) will mainly be considered. 

Definition of robustness 
We can now define robustness more precisely: a smoothing methods is called robust if, for the 
above test problems, p < p* < 1 or pn < p* < 1 with p* independent of e and h, for some 
ho > h > 0. 
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Numerical calculation of Fourier smoothing factor 
Using the explicit expression (4.5.2) for X(9), it is not difficult to compute |A(0)|, and to find 
its largest value on the discrete set 0r or 0^ and hence the Fourier smoothing factors p or 
pD. By choosing in the definition of 0r (for example (4.4.20) or (4.4.21) various values of 
na one may gather numerical evidence that (4.4.22) is satisfied. Computation of the mesh- 
independent smoothing factor p defined in (4.4.23) is more difficult numerically, since this 
involves finding a maximum on an infinite set. In simple cases p can be found analytically, as 
we shall see shortly. Extrema of |A(0)| or 0r are found where d\\(0)\/d6a = 0,a = 1,2, ...,d 
and at the boundary of 0r. Of course, for a specific application one can compute p for the 
values of na occurring in this application, without worring about the limit na -* oo. In the 
following, we often present results for m = n2 = n = 64. It is found that the smoothing 
factors p,pD do not change much if n is increased beyond 64, except in those cases where p 
and pD differ appreciably. An analysis will be given of what happens in those cases. 

All smoothing methods to be discussed in this chapter have been defined in Section 3.3 

to 3.5. 

Local smoothing 
Local freezing of the coefficients is not realistic near points where the coefficients are not 
smooth. Such points may occur if the computational grid has been obtained as a boundary 
fitted coordinate mapping of physical domain with non-smooth boundary. Near points on 
the boundary which are the images of the points where the physical domain boundary is not 
smooth, and where the mapping is singular, the smoothing performance often deteriorates. 
This effect may be counterbalanced by performing additional local smoothing in a few grid 
points in a neighbourhood of these singular points. Because only a few points are involved, 
the additional cost is usually low, apart from considerations of vector and parallel computing. 
This procedure is described in [23] and [9] and analysed theoretically in [110] and [24]. 

4.6    Jacobi smoothing 

Anisotropie diffusion equation 
Point Jacobi 
Point Jacobi with damping corresponds to the following splitting (cf.   Exercise 3.1.1), in 
stencil notation: 

M(0) = w-aA(0),    M(j) = 0, j^O (4.6.1) 

Assuming periodic boundary conditions we obtain, using (4.5.9) and (4.5.2), in the special 

case c = 1, 5 = 0 
X(9) = 1 + w(e cos 91-e + cos 02 - 1)/(1 + e) (4.6.2) 
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Because of symmetry Qr can be confined to the hatched region of Figure 4.6.1.   Clearly, 
p > |p(7r,7r)| = |1 - 2w| > 1 for u i (0,1). For u G (0,1) we have for 9 G CDEF : A(7r,7r) < 

7C/2 

rc/2 

Figure 4.6.1: Rough wavenumbers for damped Jacobi. 

A(0, TT/2), or 1 - 2a; < X(9) < 1 - w/(l + e). For 0 € y!5CG we have 

A(7T,7r/2)< A(0)< A(TT/2,0), 

or 1 - [(1 + 2e)/(l + e)]w < A(Ö) < 1 - [e/(l + s)]u . 

l + 2e 
Hence 

p = maxfll - 2w|, ll - 1, |1 -W,     1- W|} (4.6.3) 

(4.6.4) 

+e"'        l+£    ' l+£ 

p = (2 + £)/(2 + 3£),    w = (2 + 2£)/(2 + 3£) 

For £ = 1 (Laplace's equation) we have p = 3/5, u> = 4/5.  For £ < 1 this is not a good 
smoother, since limp = 1. The case e > 1 follows from the case £ < 1 by replasing e by 1/e. 

Note that p is attained for fl G 6n so that here 

p = p (4.6.5) 

For u=lwe have p = 1, so that we have an example of a convergent method which is not a 
smoother. 

Dirichlet boundary conditions 
In the case of point Jacobi smoothing the Fourier sine series is applicable (see [141]), so 
that Dirichlet boundary conditions can be handled exactly. It is found that with the sine 
series \{6) is still given by (4.6.2), so all that needs to be done is to replace 0r by 0^? in the 
preceding analysis. This is an example where our heuristic definition of pp leads to the correct 
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result. Assume m = n2 = n. The whole of 0^ is within the hatched region of Figure 4.6.1. 
Reasoning as before we obtain, for 0 < e < 1: 

A(JT, TT) < X(9) < A(27r/n, TT/2),   A(TT, TT/2) < A(0) < A(TT/2, 27r/n) (4.6.6) 

Hence/>D = max{|l - 2w|, |1 -£w(l + 2TT
2
/«

2
)/(1 + e)|, so that /)£, = p + 0{n~2), and again 

we conclude that point Jacobi is not a robust smoother for the anisotropic diffusion equation. 

Line Jacobi 
We start again with some analytical considerations. Damped vertical line Jacobi iteration 
applied to the discretized anisotropic diffusion equation (4.5.6) with c = 1, s = 0 corresponds 
to the splitting 

[M] = a;-1     0   2 + 2£   0 (4.6.7) 

L _1 

The amplification factor is given by 

\(9) = ue cos 0j/(l + e - cos 92) + 1 - w (4.6.8) 

both for the exponential and the sine Fourier series. We note immediately that |A(7r,0)| = 1 
if u = 1, so that for u = 1 this seems to be a bad smoother. This is surprising, because as 
£ I 0 the method becomes an exact solver. This apparent contradiction is resolved by taking 
boundary conditions into account. In Example 4.6.1 it is shown that 

PD = |A(7r, <p)\ = e/(l + s - cos <yj)   for    u = 1 (4.6.9) 

where ip = 2ir/n. As n —► CXD we have 

pD ~ (1 + 2ir2h2/e)-1 (4.6.10) 

so that indeed lim on = 0. Better smoothing performance may be obtained by varying u. In 

Example 4.6.1 it is shown that p is minimized by 

3 + 2e v ' 

Note that for 0 < e < 1 we have 2/3 < w < 4/5, so that the optimum value of w is only 
weakly dependent on e. We also find that for u> in this range the smoothing factor depends 
only weakly on u. We will see shortly that fortunately this seems to be true for more general 
problems also. 
With u according to (4.6.11) we have 

/> = (1 + 2e)/(l + 3e) (4.6.12) 
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Choosing u — 0.7 we obtain 

p = max{l - 0.7/(1 + e), 0.6} (4.6.13) 

which shows that we have a good smoother for all 0 < e < 1, with an e-independent u. 

Example 4.6.1. Derivation of (4.6.9) and (4.6.11). Note that \(0) is real, and that we need 
to consider only 9a > 0. It is found that dX/d9i = 0 only for 0\ = 0,7r. Starting with po, 
we see that max{|A(0)| : 6 G ©f} is attained on the boundary of öf. Assume «i = n2 = n, 
and define <p = 2ir/n. It is easily see that max{|A(0)| : 9 G 0f } will be either |A(y?,7r/2)| or 
\\(ir,<p)\. If u = 1 it is |A(7r, (p)\, which gives us (4.6.9). We will determine the optimum value 
of w not for po but for p. It is sufficient to look for the maximum of |A(#)| on the boundary 
of 0r. It is easily seen that 

p = max{|A(0, TT/2)|, |A(TT, 0)|} = max{l - w/(l + e), |1 - 2w|} 

which shows that we must take 0 < u> < 1. We find that the optimal u> is given by (4.6.11). 
Note that in this case we have p = p. 

Equation (4.5.5), for which the proceeding analysis was done, corresponds to ß = 0 in (4.5.3). 
For ß — 7r/2 damped vertical line Jacobi does not work, but damped horizontal line Jacobi 
should be used. The general case may be handled by alternating Jacobi: vertical line followed 
by horizontal line Jacobi. Each step is damped separately with a fixed problem-independent 
value of u. After some experimentation w = 0.7 was found to be suitable; (cf. (4.6.12) and 
(4.6.13). Table 4.6.1 presents results. Here and in the remainder of this chapter we take 
m = n2 = n, and ß is sampled with intervals of 15°, unless stated otherwise. The worst case 
found is included in the tables that follow. 

Increasing n, or finer sampling of ß around 45° or 0°, does not result in larger values 
of p and po than those listed in Table 4.6.1. It may be concluded that damped alternating 
Jacobi with a fixed damping parameter of u> = 0.7 is an efficient and robust smoother for the 
rotated anisotropic diffusion equation, provided the mixed derivative is discretized according 
to (4.5.8). Note the good vectorization and parallelization potential of this method. 
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(4.5 .6) (4.5 .8) 
£ P,PD ß P,PD ß 
1 0.28 any 0.28 any 

lo-1 0.63 45° 0.38 45u 

lO"2 0.95 45° 0.44 45° 
10-3 1.00 45° 0.45 45° 
10-5 1.00 45° 0.45 45° 
lO"8 1.00 45° 0.45 45° 

Table 4.6.1: Fourier smoothing factors p,po for the rotated anisotropic diffusion equation 
(4.5.3) discretized according to (4.5.6) or (4.5.8); damped alternating Jacobi smoothing; 

w  =  0.7; n = 64. 

Convection-diffusion equation 
Point Jacobi 
For the convection-diffusion equation discretized with stencil (4.5.11) the amplification factor 
of damped point Jacobi is given by 

A(0) = «(2 cos ex + 2 cos 02 + V1 + Pie-iff2)/(4 + i\ + P2) + 1 - w (4.6.14) 

where Px = ch/e, P2 = sh/e. Consider the special case: Pi = 0, P2 = 4/6. Then 

A(7r,0) = l-w + w/(l + «) (4.6.15) 

so that |A(TT,0)| -► 1 as 6 J. 0, for all u, hence there is no value of u> for which this smoother 
is robust for the convection-diffusion equation. 

Line Jacobi 
Let us apply the line Jacobi variant which was found to be robust for the rotated anisotropic 
diffusion equation, namely damped alternating Jacobi with u = 0.7, to the convection- 
diffusion test problem. Results are presented in Table 4.6.2. 

Finer sampling of ß around ß = 0° and increasing n does not result in significant changes. 
Numerical experiments show u - 0.7 to be a good value. It may be concluded that damped 
alternating Jacobi with a fixed damping parameter (for example, u - 0.7) is a robust and 
efficient smoother for the convection-diffusion test problem. The same was just found to be 
true for the rotated anisotropic diffusion test problem. The method vectorizes and parallelizes 
easily, so that all in all is an attractive smoother. 
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1 
lo-1 

lo-2 

10-3 

10-5 

P ß PD ß 
0.28 0° 0.28 0° 
0.28 0° 0.29 0° 
0.29 0° 0.29 0° 
0.29 0° 0.29 0° 
0.40 0° 0.30 0° 

Table 4.6.2: Fourier smoothing factors p, pn for the convection-diffusion equation discretized 
according to (4.5.11); damped alternating line Jacobi smoothing; u = 0.7; n = 64. 

Exercise 4.6.1 Assume semi-coarsening as discussed in Section 4.4: hi = h\, h-i = /12/2. 
Show that damped point Jacobi is a good smoother for equation (4.5.5) with 0 < e < 1. 

Exercise 4.6.2 Show that Urn p = 1 for alternating Jacobi with damping parameter u> = 1 

applied to the convection-diffusion test problem. 

4.7    Gauss-Seidel smoothing 

Anisotropie diffusion equation 
Point Gauss-Seidel 
Forward point Gauss-Seidel iteration applied to (4.5.3) with c = 1, s = 0 corresponds to the 
splitting 

m = 
0 

-e   2s + 2   0 
-1 

[N] = 0    0    £ 
0 

(4.7.1) 

(4.7.2) 

The amplification factor is given by 

A(0) = (eeie2 + ei92)/(-£e-iei + 2e + 2 - eiÖ2) 

For £ = 1 (Laplace's equation) one obtains 

p = |A(TT/2, cos-1(4/5))| = 1/2 (4.7.3) 

To illustrate the technicalities that may be involved in determining p analytically, we give the 
details of the derivation of (4.7.3) in the following example. 

Example 4.7.1. Smoothing factor of forward point Gauss-Seidel for Laplace equa- 
tion. We can write 

a ß |A(0)|2 = (1 + cos ß)/(9 - 8 cos - cos ^ + cos ß) (4.7.4) 
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with a = 0i+62, ß = 0i-62. Because of symmetry only a, ß > 0 has to be considered. We 

have 
d\\(0)\2/da = O   for     sin(a/2) cos(/?/2) = 0 (4.7.5) 

This gives a = 0 or a = 2ir or ß = n. For ß = 7r we have a minimum: |A|2 = 0. With 
a = 0 we have |A(0)|2 = cos2(/3/2)/(2 - cos(/3/2))2, which reaches a maximum for ß = 2TT, 

i.e. at the boundary of 0r. With a = 2n we are also on the boundary of 0r. Hence, the 
maximum of |A(0)| is reached on the boundary of 0r. We have |A(TT/2,02)|

2
 = (l + sin02)/(9 + 

sin 02-4 cos 02), of which the 02 derivative equals 0 of 8 A cos 02 - 4 sin 02 - 4 = 0, hence 
02 = -7I-/2, which gives a minimum, or 02 = ± cos (4/5). The largest maximum is ob- 
tained for 02 = cos-1 (4/5). The extrema of |A(7r,02| are studied in similar fashion. Since 
A(0i,02) = A(02,0i) there is not need to study |A(0I,TT/2)| and |A(0a,7r)|. Equation (4.7.3) 
follows. 

We will not determine p analytically for e # 1, because this is very cumbersome. To do this 
numerically is easy, of course. Note that lim A(TT,0) = 1, lim A(TT,0) = -1, so that forward 

point Gauss-Seidel is not a robust smoother for the anisotropic diifusion equation, if standard 
coarsening is used. See also Exercise 4.7.1. 

With semi-coarsening in the x2 direction we obtain in Example 4.7.2: p < {(1 + e)/(5 + 
e)}1/2, which is satisfactory for e < 1. For e > 1 one should use semi-coarsening in the 
xi-direction. Since in practice one may ave s < 1 in one part of the domain and e > 1 in 
another, semi-coarsening gives a robust method with this smoother only if the direction of 
semi-coarsening is varied in the domain, which results in more complicated code than standard 
multigrid. 

Example 4.7.2. Influence of semi-coarsening. We will show 

p<[(l + e)/(5 + e)]1'2 (4.7.6) 

for the smoother defined by 94.7.1) with semi-coarsening in the x2 direction. From (4.7.2) 
it foUows that one may write |A(0)|-2 = 1 + (2 + 2e)/*(0) with /x(0) = (2 + 2e -2e cos 0a - 
2 cos 02)/[l + e2 + 2e cos (0a - 02]. In this case, 0r is given in Figure 4.4.2. On 0r we have 

/x(0) > (2 + 2e - 2e cos 0! - 2 cos 02)/(l + ef > 2/(1 + e)2 . 

Hence |A(0)| > [1 + 4/(1 + e)]'1/2, and (4.7.6) follows. 

For backward Gauss-Seidel the amplification factor is A(-0), with A(0) given by (4.7.2), so 
that the amplification factor of symmetric Gauss-Seidel is given by A(-0)A(0). From (4.7.2) 
it follows that |A(0)| = |A(-0)|, so that the smoothing factor is the square of the smoothing 
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factor for forward point Gauss-Seidel, hence, symmetric Gauss-Seidel is also not robust for 
the anisotropic diffusion equation. Also, point Gauss-Seidel-Jacobi (Section 3.3) does not 
work for this test problem. 

The general rule is: points that are strongly coupled must be updated simultaneously. Here 
we mean by strongly coupled points: points with large coefficients (absolute) in [A]. For 
example, in the case of Equation (4.5.5) with s < 1 points on the same vertical line are 
strongly coupled. Updating these points simultaneously leads to the use of line Gauss-Seidel. 

Line Gauss-Seidel 
Forward vertical line Gauss-Seidel iteration applied to the anisotropic diffusion equation 
(4.5.5) corresponds to the splitting 

(4.7.7) 
-1 0 

£   2£ + 2   0 ,    [N] = 0     0     £ 
-1 0 

[M) = 

The amplification factor is given by 

X(9) = eei01 /(2e + 2 - 2 cos 62 - ee~ih) 

and we find Example 4.7.3, which follows shortly: 

p = max{5-1/2, (2/e + l)"1} 

(4.7.8) 

(4.7.9) 

Hence, limp = 5""1/2.  This is surprising, because for £ = 0 we have, with Dirichlet bound- 
ej.0 

ary conditions, uncoupled non-singular tridiagonal systems along vertical lines, so that the 
smoother is an exact solver, just as in the case of line Jacobi smoothing, discussed before. The 
behaviour of this smoother in practice is better predicted by taking the influence of Dirichlet 
boundary conditions into account. We find in Example 4.7.3 below: 

£ < (1 + V5)/2 :    PD = £[e2 + (2e + 2 - 2 cos <p?]~1/2 

£ > (1 + y/5)/2 :    PD = e[e2 + (2e + 2)(2e + 2 - 2e cos <p)}~1/2 (4.7.10) 

with <p = 2nh, h = 1/n, assuming for simplicity n\ — n2 = n. For e < (1 + v5)/2 and h \, 0 
this can be approximated by 

pD-[i + (2 + v,2A02]"1/2 (4.7.11) 

and we see that the behaviour of pn as e J, 0, h J, 0 depends on <£>2/£ = 4T2h2/e. For h J, 0 
with £ fixed we have PD - P and recover (4.7.9); for e [ 0 with h fixed we obtain pD = 0. To 
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give a practical example, with h = 1/128 and e = 10 6 we have pD = 0.0004. 

Example 4.7.3. Derivation of (4.7.9) and (4.7.10). It is convenient to work with 
|A(0)|~2. We have 

| A(0)|~2 = [(2e + 2 - £ cos 0X - 2 cos 92f + e2 sin2 9^/s2 . 

Min {|A(0)|~2 : 9 G 0?} is determined as follows. We need to consider only 9a > 0. It is 
found that d\\(9)\-2/d92 = 0 for 92 = 0 for 92 = 0,TT only. Hence the minimum is attained 
on the boundary of 0f. Choose for simplicity m = n2 = n, and define <p = 2ir/n. It is easily 
seen that in 0f we have 

m,v)\-2 > iA(7r/2,v)r2, iA(v>,02)r
2>iA(vW2)r2, 

|A(TT,ö2)|-
2
   >    |A(^^)|-2,    |A(0I,7T/2)|-

2
>|A(YW2)|

2
, 

|A(TT/2,ö2)|-
2
   >    |A(7r/2,v>)r2,    |A(fli,ff)|-2>|A(V,7r)|-2 

For £ < (1 + \/5)/ the minimum is |A(7r/2,</c)|_2; for e > (1 + >/5)/2, the minimum is 
|A(</>,7r/2)|-2. This gives us (4.7.10). We continue with (4.7.9). The behaviour of \\(9)\ on 
the boundary of Qr is found simply by letting <p -+ Oin the preceding results. Now there is 
also the possibility of a minimum in the interior of 0r, because 92 = 0 is allowed, but this 
leads to the minimum in (7r/2,0), which is on the boundary, and (4.7.9) follows. 

Equations (4.7.9) and (4.7.10) predict bad smoothing when e > 1. Of course, for e > 1 
horizontal line Gauss-Seidel should be used. A good smoother for arbitrary e is alternating 
line Gauss-Seidel. For analytical results, see [141]. Table 4.7.1 presents numerical values of 
p and pD for a number of cases. We take nx = n2 = n = 64, ß = kir/12, k = 0,1,2,..., 23 in 
(4.5.3), and present results only for a value of ß for which the largest p or pry is obtained. In 
the cases listed, p = pD- Alternating line Gauss-Seidel is found to be a robust smoother for 
the rotated anisotropic diffusion equation if the mixed derivative is discretized according to 
(4.5.8), but not if (4.5.6) is used. Using under-relaxation does not change this conclusion. 

Convection-diffusion equation 
Point Gauss-Seidel 
Forward point Gauss-Seidel iteration applied to the central discretization of the convection- 
diffusion equation (4.5.10) is not a good smoother, see [141]. 
For the upwind discretization (4.5.11) one obtains, assuming c > 0, 5 > 0: 

un - e^[l + (Ifil - FQ/2] + e*[l + (\P2\ - Pa)/2] 
AW~4 + |P1| + |P2|-e-^[l + (Pi + |Pi|)/2]-e^[l + (P2 + |P2|)/2] V ' '    ; 

with Pi = ch/e, P2 = sh/e the mesh-Peclet numbers (for simplicity we assume n\ - n2). 
For Pi > 0, P2 < 0 we have |A(0,7r)| = |P2/(4-P2)|, which tends to 1 as |P2| -»• oo. To avoid 
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(4.5.6) (4.5.8) 
£ P,PD           ß P,PD       ß 
1 0.15  any 0.15  any 

lo-1 0.38  105° 0.37  15° 
lO"2 0.86  45° 0.54  15° 
10-3 0.98  45° 0.58  15° 
10-5 1.00  45° 0.59  15° 

Table 4.7.1: Fourier smoothing factors p, p£> for the rotated anisotropic diffusion equation 
(4.5.3) discretized according to (4.5.6) and (4.5.8); alternating line Gauss-Seidel smoothing; 
n = 64. 

this the order in which the grid points are visited has to be reversed: backward Gauss-Seidel. 
Symmetric point Gauss-Seidel (forward followed by backward) therefore is more promising 
for the convection-diffusion equation. Table 4.7.2 gives some numerical results for p, for 
m = n2 — 64. We give results for a value of ß in the set {/? = kir/12 : k = 0,1,2, ...,23} for 
which the largest p and pr> are obtained. 

Although this is not obvious from Table 4.7.2, the type of boundary condition may make 
a large difference. For instance, for ß = 0 and e [ 0 one finds numerically for forward point 
Gauss-Seidel: p = |A(0,7r/2)| = l/VE, whereas lim/>£> = 0, which is more realistic, since as 

ej.0 

e I 0 the smoother becomes an exact solver. The difference between p and pD is explained 
by noting that for 0-y = ip = 2nh and (p < 1 we have \\(<p, 7r/2)|2 = 1/(5 + y + \y2) with 
y = 2wh2£. 
For £<1 and ß = 105° Table 4.7.2 shows rather large smoothing factors. In fact, symmetric 
point Gauss-Seidel smoothing is not robust for this test problem. This can be seen as follows. 
If Pa < 0, P2 > 0 we find 

Choosing Pi = — aPi one obtains, assuming P2 > 1, aP2 ~> 1: 

|A(|,0)-(l + a)-2 (4.7.14) 

so that p may get close to 1 if a is small. The remedy is to include more sweep directions. 
Four-direction point Gauss-Seidel (consisting of four successive sweeps with four orderings: 
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e P PD ß 
1 0.25 0.25 0 

10-1 0.27 0.25 0 
io-2 

0.45 0.28 105° 

IO-3 0.71 0.50 105° 

IO-5 0.77 0.71 105° 

Table 4.7.2: Fourier smoothing factors p, po for the convection-diffusion equation discretized 
according to (4.5.11); symmetric point Gauss-Seidel smoothing. 

the forward and backward orderings of Figure 3.3.1, the forward vertical line ordering of Fig- 
ure 3.3.1, and this last ordering reversed) is robust for this test problem, as illustrated by 
Table 4.7.3. 

As before, we have taken ß = kv/12, k = 0,1,2, ...,23; Table 4.7.3 gives results only 
for a value of ß for which the largest p and po are obtained.   Clearly, four-direction point 
Gauss-Seidel is an excellent smoother for the convection-diffusion equation. It is found that 
p and pD change little when n is increased further. 
Another useful smoother for this test problem is four-direction point Gauss-Seidel-Jacobi, 

£ p PD ß 
1 0.040 0.040 0° 

IO"1 0.043 0.042 0° 
IO"2 0.069 0.068 0° 
10-3 0.16 0.12 0° 
10-5 0.20 0.0015 15° 

Table 4.7.3: Fourier smoothing factors p,pr> for the convection-diffusion equation discretized 
according to (4.5.11); four-direction point Gauss-Seidel smoothing; n = 64. 

defined in Section 3.3. As an example, we give for discretization (4.5.11) the splitting for the 
forward step: 

0 
[M] -14   0 

0 
[N] = [M] - [A] 

+ f[-c-|c| 2|c| 0] 
(4.7.15) 
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The amplification factor is easily derived. Table 4.7.4 gives results, sampling ß as before. The 
results are satisfactory, but there seems to be a degradation of smoothing performance in the 
vicinity of ß = 0° (and similarly near ß = kir/2, k = 1,2,3). Finer sampling with intervals 
of 1° gives the results of Table 4.7.5. 

This smoother is clearly usable, but it is found that damping improves performance still 
further. Numerical experiments show that u - 0.8 is a good value; each step is damped 
separately. Results are given in Table 4.7.6. Clearly, this is an efficient and robust smoother 
for the convection-diffusion equation, with u fixed at u = 0.8. Choosing u = 1 gives a little 
improvement for e/h > 0.1, but in practice a fixed value of u is to be preferred, of course. 

s p PD ß 
1 0.130 0.130 0U 

10-1 0.130 0.130 45° 
io-2 0.127 0.127 45° 
10~3 0.247 0.242 15° 
10~5 0.509 0.494 15° 
IO"8 0.514 0.499 15° 

Table 4.7.4: Fourier smoothing factors p,pn for the convection-diffusion equation discretized 
according to (4.5.11); four-direction point Gauss-Seidel-Jacobi smoothing; n = 64. 

£ n P ß PD ß 

0O
      00 

1    1 
O

   O
 

T-H
    r—

1 

64 

128 

0.947 
0.949 

lu 

1° 
0.562 

0.680 

8U 

5° 

Table 4.7.5: Fourier smoothing factors p,po for the convection-diffusion equation discretized 
according to (4.5.11); four-direction point Gauss-Seidel-Jacobi smoothing. 

Line Gauss-Seidel 
For forward vertical line Gauss-Seidel we have 

\(0) = e^[l - P! - |Pi|)/2]/{4+ |Pi| + m- eih[l + (Pi + |Pi|)/2] 

-e«'*[l + (|P2| - P2)/2] - ei92[l + (Pi + \P2\)/2]} (4.7.16) 
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e P,PD ß 
1.0 0.214 0° 
lo-1 0.214 0° 
io-2 0.214 45° 
10-3 0.217 45° 
10-5 0.218 45° 
IO"8 0.218 45° 

Table 4.7.6: Fourier smoothing factors, P,PD for the convection-diffusion equation discretized 
according to (4.5.11); four-direction point Gauss-Seidel-Jacobi smoothing with damping pa- 
rameter u> = 0.8; n = 64. 

For Pa < 0, P2 > 0 this gives |A(TT,0)| = (1 - Pi)/(3 - Pi), which tends to 1 as |Pi| -> 00, 
so that this smoother is not robust. Alternating line Gauss-Seidel is also not robust for this 
test problem. If P2 < 0, Pi = aP2, a > 0 and |P2| > 1, |aP2| > 1 then 

\(0,Tr/2)^ia/(l + a-i) (4.7.17) 

so that |A(0,7r/2)| = a/[(l + a)2 + 1]1/2, which tends to 1 if a > 1. Symmetric (forward fol- 
lowed by backward) horizontal and vertical line Gauss-Seidel are robust for this test problem. 
Table 4.7.7 presents some results. Again, n = 64 and ß = kn/2, k = 0,1,2,..., 23; Table 4.7.7 

£ p ß PD ß 
1 0.20 90° 0.20 90u 

IO"1 0.20 90° 0.20 90° 
10-2 0.20 90° 0.20 90° 
10-3 0.30 0° 0.26 0° 
10-5 0.33 0° 0.0019 75° 

Table 4.7.7: Fourier smoothing factors, P,PD for the convection-diffusion equation discretized 
according to (4.5.11); symmetric vertical line Gauss-Seidel smoothing; n = 64. 

gives results only for the worst case in /?. 
We will not analyse these results further. Numerically we find that for ß — 0 and £<1 that 
p = (A(0,TT/2) = (1 + Pi)/(9 + 3Pi) ^ 1/3. As e I 0, pD depends on the value of ne. It is 
clear that we have a robust smoother. 
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We may conclude that alternating symmetric line Gauss-Seidel is robust for both test 
problems, provided the mixed derivative is discretized according to (4.5.8). A disadvantage 
of this smoother is that it does not lend itself to vectorized or parallel computing. 
The Jacobi-type methods discussed earlier and Gauss-Seidel with pattern orderings (white- 
black, zebra) are more favourable in this respect. Fourier smoothing analysis of Gauss-Seidel 
with pattern orderings is more involved, and is postponed to a later section. 

Exercise 4.7.1 Show that damped point Gauss-Seidel is not robust for the rotated anisotropic 
diffusion equation with c = 1, 5 = 0, with standard coarsening. 

Exercise 4.7.2 An Exercise 4.7.1, but for Gauss-Seidel-Jacobi method. 

4.8    Incomplete point LU smoothing 

For Fourier analysis it is necessary that [M] and [N] are constant, i.e. do not depend on the 
location in the grid. For the methods just discussed this is the case if [A] is constant. For 
incomplete factorization smoothing methods this is not, however, sufficient. Near the bound- 
aries of the domain [M] (and hence [N] = [M]-[A]) varies, usually tending rapidly to a con- 
stant stencil away from the boundaries. Nevertheless, useful predictions about the smoothing 
performance of incomplete factorization smoothing can be made by means of Fourier analysis. 
How this can be done is best illustrated by means of an example. 

Five-point ILU 
This incomplete factorization has been defined in Section 4.4, in standard matrix notation. 
In Section 4.4 A was assumed to have a five-point stencil. With application to test problem 
(4.5.6) in mind, A is assumed to have the seven-point given below. In stencil notation we 
have 

[A]     = 

Wh   = 

f 
c 

9 
d 
a 
0 
Si 
0 

[L]i 

[U]i 

0 
Si 
a 

9 
Si 
0 

0 

(4.8.1) 

where i = («1,^2). We will study the unmodified version. For Si we have the recursion (3.4.12) 
with cr = 0: 

Si = d- ag/Si-e2 - cq/Si-ei (4.8.2) 

where e\ = (1,0), e2 = (0,1). Terms involving negative values of ia, a = 1 or 2, are to be 
repaced by zero. We will show the following Lemma. 
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Lemma 4.8.1. If 

then 

a + c + d+q + g>0,   a,c,q,g<0,   d>0 (4.8.3) 

.lim    Si = S = d/2 + [d2/4 - (ag + cq)}1'2 (4.8.4) 
*'li*2—>0° 

The proof is given in [141]. Note that (4.8.3) is satisfied if b = f = 0 and A is a if-matrix 
(Section 3.2). Obviously, 6 is real, and 6 > d. The rate at which the limit is reached in (4.8.4) 
is studied in [141]. A sufficient number of mesh points away from the boundaries of the grid 
G we have approximately Si = S, and replacing S{ by 6 we obtain for [M] = [L][£>_1][t/]: 

[M} = 
cg/S 9 

c d 9 
a aq/6 

(4.8.5) 

and standard Fourier smoothing analysis can be applied. Equation (4.8.5) is derived eas- 
ily by nothing that in stencil notation (ABu)i = SjSfcA(i, j)S(i + j,k)ui+j+k, so that 
A(i,j)B(i+j, k) gives a contribution to C(i,j + k), where C = AB; by summing all contribu- 
tions one obtains C(i,l). An explicit expression for C(i,l) is C(i,l) = EjA(iJ)B(i + j,l-j), 
since one can write (Cu)i = EiY,jA(i,j)B(i + j,l- i)«,-+/. 

Smoothing factor of five-point ILU 
The modified version of incomplete factorization will be studied. As remarked in [145] modi- 
fication is better than damping, because if the error matrix N is small with a = 0 it will also 
be small with a ^ 0. The optimum a depends on the problem. A fixed a for all problems is to 
be preferred. From the analysis and experiments in [145] and [147] and our own experiments 
it follows that a = 0.5 is a good choice for all point-factorizations considered here and all 
problems. Results will be presented with a = 0 and a = 0.5. The modified version of the 
recursion (3.4.12) for Sk is 

Sk = d - ag/h-i ~ cq/Sk-i + <r{\aq/6k-i - b\ + {cg/S^ - /|} (4.8.6) 

The limiting value 6 in the interior of the domain, far from the boundaries, satisfies (4.8.6) 
with the subscripts omitted, and is easily determined numerically by the following recursion 

£fc+1 = d - (aq + cq)/Sk + a{\aq/Sk - b\ + \cg/Sk - f\} (4.8.7) 

The amplification factor is given by 

A(0)    =    {(aq/6 - 6)ea:p[t(0i - 02)] + (cg/S - f)exp[i(62 - *i)] + vp}/ 

{aexp(-i62) + aqexp[i(di - 92)]/S + cexp(-i&i) + d + ap 

+qexp(i6i) + cgexp[i(62 - 0i)]/S + gexp(i62)} (4.8.8) 
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where p = \aq/6 - b\ + \cg/6 - f\. 

Anisotropie diffusion equation 
For the (non-rotated ß = 0°) anisotropic diffusion equation with discretization (4.5.6) we have 
g = a = -1, c = q = -e, d = 2 + 2e, b = f = 0, and we obtain: 6 = 1 + £ + [2e(l + cr)]1/2, 
and 

A(0) = [£^(0! - 02)/Ä + ffe/«]/ 
[1 + e + ae/6 - e cos 9X - cos 02 + £ cos(Öx - 03)/6] (4.8.9) 

We will study a few special cases. For £ = 1 and a = 0 we find in [141]: 

p = |A(TT/2, -TT/3)| = (2\/3 + -v/6 - 1)_1 =* 0.2035 (4.8.10) 

The case £ = 1, CT ^ 0 is analytically less tractable. For £ < 1 we find in [141]: 

0<a<l/2:   /><*|A(7r,0) = (l-a)/(2«-l + (7) asm 
1/2 < er < 1 :   p S |A(TT/2) = <r/(cr + «) ^.0.11; 

0 < a < 1/2 :   pD S |A(TT, r)| = (1 - a)/(2« - 1 + a + ^r2/2£) . . 
l/2<cr<l:   pDS|A(7r/2,T)| = ((7 + r)(<T + « + «r2/2e) ^ ; 

where r = 27r/n2. These analytical results are confirmed by Table 4.8.1. For example, for 
£ = IO-3, n2 = 64 and a = 1/2 equation (4.8.12) gives pD S 0.090, p ^ 1/3. Table 4.8.1 
includes the worst case for ß in the set {ß = kn/12, k = 0,1,2, ...,23). Here we have another 
example showing that the influence of the type of the boundary conditions on smoothing 
analysis may be important. For the non-rotated anisotropic diffusion equation (ß = 0° or 
ß = 90°) we have a robust smoother both for a = 0 and a = 1/2, provided the boundary 
conditions are of Dirichlet type at those parts of the boundary that are perpendicular to the 
direction of strong coupling. When ß is arbitrary, five-point ILU is not a robust smoother 
with a = 0 or a = 1/2. We have not experimented with other values of <r, because, as it will 
turn out, there are other smoothers that are robust, with a fixed choice of a, that does not 
depend on the problem. 

55 



£ a 
P 

/? = 0°,90° 
P 

/3 = 15° 
PD 
/3 = 0°,90° 

PD 
/3 = 15° 

1 0 0.20 0.20 0.20 0.20 

lo-1 0 0.48 1.48 0.46 1.44 

lo-2 0 0.77 7.84 0.58 6.90 

io-3 0 0.92 13.0 0.16 10.8 

io-5 0 0.99 13.9 0.002 11.5 
1 

IO"1 

IO"2 

0.5 
0.5 
0.5 

0.20 
0.26 
0.30 

0.20 
0.78* 
1.06 

0.20 
0.26 
0.025 

0.20 
0.78* 
1.01 

IO"3 0.5 0.32 1.25 0.089 1.18 
10-5 0.5 0.33 1.27 0.001 1.20 

Table 4.8.1: Fourier smoothing factors, p,po for the rotated anisotropic diffusion equation 
discretized according to (4.5.6); five-point ILU smoothing; n = 64. In the cases marked with 
*, ß = 45° 

Convection-diffusion equation 
Let us take Pa = -aP2, a > 0, P2 > 0, where Pt = ch/e, P2 = sh/e. Then we have for the 
convection-diffusion equation discretized according to (4.5.11): a = -1 - P2, b = f = 0, c — 
-1, d = 4 + (1 4- a)P2, q = -I - aP2, g = -1. After some manipulation one finds that if 
a < 1, P2 > 1, aP2 > 1, then A(7r/2,0) -> i as P2 -► 00. This is accordance with Table 4.8.2. 
The worst case obtained when ß is varied according to ß = for/12, k = 0,1,2, ...,23 is listed. 
Clearly, five-point ILU is not robust for the convection-diffusion equation, at least for a = 0 
and <r = 0.5 

Seven-point ILU 
Seven-point ILU tends to be more efficient and robust than five-point ILU. Assume 

[A] = 
f 9 
c d q 

a b 
(4.8.13) 

The seven-point incomplete factorization A = LD 1U-N discussed in Section 4.4 is defined 
in stencil notation as follows: 

[L]i = 

0     0 0    0 d   v 
7»    k    ° ,    [Di = 0   Si   0 ,    [U]i = 0    Si   \ix 

OL{     ßi 0    0 0    0 
(4.8.14) 
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£ P          PD ß P         PD 
a = 0 a = 0.5 

1 0.20 0.20 0U 0.20 0.20 

lo-1 0.21 0.21 0° 0.20 0.20 

lo-2 0.24 0.24 120° 0.24 0.24 

10"3 0.60 0.60 105° 0.48 0.48 

10~5 0.77 0.71 105° 0.59 0.58 

Table 4.8.2: Fourier smoothing factors p,pD for the convection-diffusion equation discretized 
according to (4.5.11); five-point ILU smoothing; n = 64 

cti = a etc., 

(4.8.15) 

(4.8.16) 

We have, taking the limit i —>• oo, assuming the limit exists and writing lim,-. 

a   =    a, ß = b — a^/S, 7 = c - a(/8 , 

/*   =   ? - ßg/s* C = / - 19 ß, V = 9 

with 6 the appropriate root of 

S = d - (ag + ß( + TM)* + a(\ßp/S\ + |7C/*I) 

Numerical evidence indicates that the limiting S resulting as i —► 00 is the same as that for 
the following recursion, 

ßo = b, 70 = c, <S0 = d, ßo = q, Co = / 
ßj+i =b~ aPj/sj, 7i+i = c - a(j/Sj 

6j+1 =d-(ag + ßj+1Q + ij+iHj)/Sj + a(\ßj+1fXj/Sj\ + |7j+iCj/^l) 
Pj+i = 1- ßj+i9/8j, Cj+i = / - lj+i9/8j 

For M we find M = LD'XV = A + N, with 

(4.8.17) 

[JV] = 
0 0 
0 P3 
0 0 0 pi 

Pi   =   ßp/6, P2 = l(/6, 

Pz   =   <r(\pi\ + \P2\1) 

(4.8.18) 

The amplification factor is given by 

A(0)    =    {p3 + px exp[t(2ö1 - 02)] + P2 exp[-i(20i - 02)]}/ 

{aexp(-t6>2) + 6exp[t(02 - 0i)} + P\ exp[i(2Öa - 02)} + cexp(-z0a) 

+d + p3 + q exp(iöa) + p2 exp[-i(20i - 02)] 

+/exp[-t(0a - 02)] + g exp(i02)} (4.8.19) 
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Anisotropie diffusion equation 
For the anisotropic diffusion problem discretized according to (4.5.9) we have symmetry: 
fx = 7, £ = ß, g = a, f - b, q = c, so that (4.8.19) becomes 

A(0) = [ap+pcos(2e1-e2y 
[a cos02 + bcos(0i - Ö2) + c cos ^ + d/2 + ap + pcos(20i - 02)]        (4.8.20) 

with p = ßfi/S. 
With rotation angle ß = 90° and s < 1 we find in [141]: 

0<a<l/2:   P^|A(0,7r)|~2fcÄ a 8 21) 
l/2>a>l:   p~\\(oiir/2)\~^ 

0 < <r < 1/2 :   /9D ~ \\(<p, TT)| ~ |(o- - 1 + 2<p2)l[P{2 + <p2/2e) + a - 1]| f4    22) 

1/2 < ff < 1 :   />c ^ |A(y, TT/2)| ~ |(o- + 2^)/[^2(l + <f2/2e) + a - 2op]| v ' ' 

with y? = 27r/«i. These results agree approximately with Table 4.8.3. For example, for 
e = 10-3, m = 64 Equation (4.8.22) gives pD ~ 0.152 for a = 0, and />D ~ 0.103 for cr = 0.5. 
Table 4.8.3 includes the worst case for ß in the set {/? = kw/12, k = 0,1,2,..., 23}. Equations 
(4.8.21) and (4.8.22) and Table 4.8.3 show that the boundary conditions may have an impor- 
tant influence. For rotation angle ß = 0 or ß = 90°, seven-point ILU is a good smoother for 

P P PD PD 
£ a ß = 0° /5 = 90° P,ß ß = 0° /? = 90° PD,ß 
1 0 0.13 0.13 0.13, any 0.12 0.12 0.12, any 

10-1 0 0.17 0.27 0.45, 75° 0.16 0.27 0.44, 75u 

lO"2 0 0.17 0.61 1.35, 75° 0.11 0.45 1.26, 75° 

10~3 0 0.17 0.84 1.69, 75° 0.02 0.16 1.55, 75u 

10"5 0 0.17 0.98 1.74, 75° lO-4 0.002 1.59, 75u 

1 0.5 0.11 0.11 1.11, any 0.11 0.11 0.11, any 

lO"1 0.5 0.089 0.23 0.50, 60° 0.087 0.23 0.50, 60u 

lO"2 0.5 0.091 0.27 0.77, 60° 0.075 0.25 0.77, 60u 

lO-3 0.5 0.091 0.31 0.82, 60° 0.029 0.097 0.82, 60u 

10"5 0.5 0.086 0.33 0.83, 60° 4 x 10~4 10~3 0.82, 60° 

Table 4.8.3:  Fourier smoothing factors p,po for the rotated anisotropic diffusion equation 
discretized according (4.5.6); seven-point ILU smoothing; n = 64 

the anisotropic diffusion equation. With a = 0.5 we have a robust smoother; finer sampling 
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of ß and increasing n gives results indicating that p and po are bounded away from 1. For 
some values of ß this smoother is not, however, very effective. One might try other values of 
a to diminish pp. A more efficient and robust ILU type smoother will be introduced shortly. 
In [141] it is shown that for ß = 45° and e < 1 

max l a+ 1       a+ 1 J 
Hence, the optimal value of a for this case is a — 0.5, for which p ~ 1/3. 

Convection-diffusion equation 
Table 4.8.4 gives some results for the convection-diffusion equation. The worst case for ß is 
the set {ß = k-K/12 : k = 0,1,2, ...,23} is listed. It is found numerically that p < 1 and 
PD < 1 when e < 1, except for ß close to 0° or 180°, where p and po are found to be 
larger than for other values of ß, which may spell trouble. We, therefore, do some analysis. 
Numerically it is found that for e < 1 and \s\ < 1 we have p ~ |A(0,7r/2)|, both for a = 0 
and a = 1/2. We proceed to determine A(0,TT/2). Assume c < 0, s > 0; then (4.5.11) gives 
a = -e - hs, b = 0, c = -s, d = As - ch + sh, q = -s + he, f = 0, g = -e. Equations 
(4.8.15) and (4.8.16) give, assuming e < 1 , |s| < 1 and keeping only leading terms in e and 
5, ß ~ (e + sh)ch/S, 7 ~ -e, p, ~ ch, ( ~ 0, 6 ~ (s - c)h, pi ~ (e + sh)c2/(s - c)2, p2 = 0. 
Substitution in (4.8.19) and neglect of a few higher order terms results in 

AfO TT/2) (v-i)(T + V  (4>8#24) 
-HU,7T/2j_ (r + 2)(i_2tan/3) + a(l + r) + i(l-2rtan /?) ^ ' 

where r = s/i/e, so that 

(7 = 0 er = 0.5 

£ A» PD ß P PD ß 
1 0.13 0.12 90° 0.11 0.11 0U 

lo-1 0.13 0.13 90° 0.12 0.12 0° 
io-2 0.16 0.16 0° 0.17 0.17 165° 

io-3 0.44 0.43 165° 0.37 0.37 165° 

IO-5 0.58 0.54 165° 0.47 0.47 165° 

Table 4.8.4: Fourier smoothing factors p,pB for the convection-diffusion equation discretized 
according to (4.5.11); seven-point ILU smoothing; n = 64 

p2 ~ (r + 1) V2 + l)/{[(r + 2)(1 - 2 tan /3) + a(l + r)]2 + (1 - 2r tan ^)2}       (4.8.25) 
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hence, 
p><(<r3 + l)/(<r + l)a (4.8.26) 

Choosing a = 1/2, (4.8.26) gives p < |-\/5 ~ 0.75, so that the smoother is robust. With 
a = 0, inequality (4.8.26) does not keep p away from 1. Equation (4.8.25) gives, for o = 0: 

limp=lA/5,     lim o = (1-4 tan /3 + 8tan2 /?)~1/2 (4.8.27) 
T-*0 T—XX) 

This is confirmed by numerical experiments. With a = 1/2 we have a robust smoother for 
the convection-diffusion equation. Alternating ILU, to be discussed shortly, may, however, 
be more efficient. With a = 0, p < 1 except in a small neighbourhood of ß = 0° and 
ß — 180°. Since in practice r remains finite, some smoothing effect remains. For example, 
for s = 0.1 (ß ~ 174.3), h = 1/64 and e = 10~5 we have r ~ 156 and (4.8.27) gives p ~ 0.82. 
This explains why in practice seven-point ILU with a - 0 is a satisfactory smoother for the 
convection-diffusion equation but a = 1/2 gives a better smoother. 

Nine-point ILU 
Assume 

f   3   P 
(4.8.28) [A] = 

/   3 
c   d 
z   a 

P 
q 
b 

Reasoning as before, we have 

" 0    0    0 " " 0   0   0 " C   V   r 
[L] = 7*0 

u   a   ß 
,    D = 0 

0 
6   0 
0   0 

5 u = 0   6   n 
0   0   0 

(4.8.29) 

For u,a,...,T we have equations (4.4.22) in [141], here interpreted as equations for scalar 
unknowns. The relevant solution of three equations may be obtained as the limit of the 
following recursion 

ßo = b,    jo- c,    <$o = d,   p0 = q,    Co = /,    »7o = 9 «o = a, 
aj+1 zpj/Sj,    ßj+i = b- aj+1pj/Sj 

7i+i = c ~ (zrli + aj+iCj)/S3 
»i+i = i\ßj+^j\ + Kil + \ßj+iP\ + lTi+iCil}/*j 

6j+i =d-(zp + ai+1rfj + ßj+iCj + tj+iPj)/6j + (?nj+1 

fJ-j+i = q~ (ai+iP + ßj+iV^/vj+i 
O+i = / - Ij+iVj/öj,    Vj+i =3- 7i+iP/*i+i 

(4.8.30) 

For M we find M = LD~lU A + N, with 

1 
~ 8 

it o 
z(   0 

0 

0    0 
an   0   ßp 
0     0   ßp 

(4.8.31) 
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with n - I7CI + Kl + \ßp\ + \ßfJ.\. The amplification factor is given by 

\(0) = B(0)/{(B(0) + A(0)} (4.8.32) 

where 

B{9) = {TCexp [i(92 - 20!)] + *Cexp (-2*0i) 

+ßpexp (2i9i) + ßfiexp [i(29i - 92] + <rn}/6 

and 

A(0) = zexp [-t(0i + 02)] + aexp (-i02) + 6exp[*(0i - 92)} + cexp (-Mi) 

+rf + gexp (»tfj) + /exp [*(ö2 - ^i)] + pexp (i02) + pexp [i(^ + 02)] 

Anisotropie diffusion equation 
For the anisotropic diffusion equation discretized according to (4.5.6) the nine-point ILU fac- 
torization is identical to the seven-point ILU factorization. Table 4.8.5 gives results for the 
case that the mixed derivative is discretized according to (4.5.8). In this case seven-point ILU 
performs poorly. When the mixed derivative is absent (ß = 0° or ß = 90°) nine-point ILU 
is identical to seven-point ILU. Therefore Table 4.8.5 gives only the worst case for ß in the 
set {ß = k/2ir, k = 0,1,2, ...,23}. Clearly, the smoother is not robust for a = 0. But also 
for «7 = 1/2 there are values of ß for which this smoother is not very effective. For example, 
with finer sampling of ß around 75° one finds a local maximum of approximately pr> = 0.73 
for ß = 85°. 

<r = 0 CT= a 
e P ß PD ß P ß PD ß 
1 0.13 any 0.12 any 0.11 any 0.11 any 

10-1 0.52 75° 0.50 75u 0.42 75u 0.42 60u 

10-2 1.51 75° 1.34 75° 0.63 75° 0.63 75° 
IO-3 1.87 75° 1.62 75° 0.68 75° 0.68 75° 
IQ"5 1.92 75° 1.66 75° 0.68 75° 0.68 75° 

Table 4.8.5: Fourier smoothing factors p, po for the rotated anisoptropic diffusion equation 
discretized according to (4.5.6), but the mixed derivative discretized according to (4.5.8); 
nine-point ILU smoothing; n = 64 
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Alternating seven-point ILU 
The amplification factor of the second part (corresponding to the second backward grid point 
ordering defined by (3.4.16)) of alternating seven-point ILU smoothing, with factors denoted 
by L,D,Ü, may be determined as follows. Let [A] be given by (4.8.13). The stencil repre- 
sentation of the incomplete factorization discussed in Section 3.4 is 

[!>) 

0   7 0   0 C  o 
0   6   ä ,    [D] = 0   6   0 ,  [u) = 7)     S     0 

0   ß 0   0 fi   0 
(4.8.33) 

In [141] it is shown that a,ß, ...,7/ are given by (4.8.15) and (4.8.16), provided the following 
substitutions are made: 

a -> q,    b^b,    c -► g,    d -»• d,    q ->■ a,    f -* f,    g (4.8.34) 

-ii The iteration matrix is M = LD    U = A + N. According to [141], 

[N] = 

P2 
0     0     0 
0     JÖ3      0 
0     0     0 

Pi 

(4.8.35) 

with pi = ßfJ-fS, P2 = TC/^ P3 = ^(bil + |P2|)- It follows that the amplification factor X(0) 
of the second step of alternating seven-point ILU smoothing is given by 

\(9)   =   {p3 + jh exp [t(0! - 202)] + P2 exp [i(292 - 61)]}/ 

{aexp (-i92) + &exp [i(6i - 62)] + cexp (iöi) + d + P3 + gexp (iff) 

+f exp [-t(öi -e2)] + g exp (iff2) + px exp [»(^ - 2Ö2)] 

+p2exp[i(2ö2-ö1)} (4.8.36) 

The amplification factor of alternating seven-point ILU is given by \(0)\(6), with X(ff) given 
by (4.8.19). 

Anisotropie diffusion equation 
Table 4.8.6 gives some results for the rotated anisotropic diffusion equation. The worst case 
for ß in the set {/? = kn/12, k = 0,1,2,..., 23} is included. We see that with a = 0.5 we have 
a robust smoother for this test case. Similar results (not given here) are obtained when the 
mixed derivative is approximated by (4.5.8) with alternating nine-point ILU. 
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e a 
P 
/3 = 0°,90° 

PD 
ß = 0°, 90° P,PD ß 

1 
lo-1 

io-2 

0 

0 

0 

9 x 10"3 

0.021 

0.041 

9 x IO-3 

0.021 

0.024 

9 x IO"3 

0.061 

0.25 

any 

30° 

45° 

10~3 0 0.057 3 x IO-3 0.61 45° 
10-5 0 0.064 10-6 0.94 45° 

1 

IO"1 
0.5 

0.5 

4 x IO-3 

0.014 

4 x IO-3 

0.014 

4 x IO-3 

0.028 

any 

15° 

IO"2 0.5 0.20 0.012 0.058 45° 
10-3 0.5 0.026 2 x IO"3 0.090 45° 
10-5 0.5 0.028 0 0.11 45° 

Table 4.8.6: Fourier smoothing factors p,po for the rotated anisotropic diffusion equation 
discretized according to (4.5.6); alternating seven-point ILU smoothing; n = 64 

Convection-diffusion equation 
Symmetry considerations imply that the second step of alternating seven-point ILU smoothing 
has, for £ < l,/)~ 1 for ß around 90° and 270°. Here, however, the first step has p < 1. 
Hence, we expect the alternating smoother to be robust for the convection-diffusion equation. 
This is confirmed by the results of Table 4.8.7. The worst case for ß in the set {ß = kir/12 : 
A; = 0,1,2, ...,23} is listed. 
To sum up, alternating modified point ILU is robust and very efficient in all cases. The use 
of alternating ILU has been proposed in [97]. 

(7 = 0 CT = 0.5 

£ P,PD ß P,PD ß 
1.0 9 x IO-3 0U 4 x IO-3 0u 

IO"1 9 x IO-3 0° 4 x IO-3 0° 
IO"2 0.019 105° 7 x IO-3 0° 
10-3 0.063 105° 0.027 120° 

10-5 0.086 105° 0.036 105° 

Table 4.8.7: Fourier smoothing factors p, pp for the convection-diffusion equation discretized 
according to (4.5.11); alternating seven-point ILU smoothing; n = 64 
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Modification has been analyzed and tested in [65], [97], [83], [82], [145] and [147]. 

4.9    Incomplete block factorization smoothing 

For the smoothing analysis of incomplete block factorization we refer to [141]. We present 
some results. 

Anisotropie diffusion equation 
Tables 4.9.1 and 4.9.2 give results for the two discretizations (4.5.6) and (4.5.8) of the rotated 
anisotropic diffusion equation. The worst cases for ß in the set {ß = kw/12, k = 0,1, ...,23} 
are included. In cases where the elements of D do not settle down quickly to values indepen- 
dent of location as one moves away from the grid boundaries, so that in these cases Fourier 
smoothing analysis is not realistic. 

e 
p 
ß = 0° 

P 
/3 = 90° P,ß 

PD 
ß = 0° 

PD 
/? = 90° PD,ß 

1 
lo-1 

0.058 

0.108 

0.058 

0.133 

0.058, any 

0.133,90° 

0.056 

0.102 

0.056 

0.116 

0.056, any 

0.116,90° 

io-2 
0.149 0.176 0.131,45° 0.195 0.078 0.131,45° 

lo-3 
0.164* 0.194 0.157*, 45° 0.025* 0.005 0.157*, 45° 

io-5 
0.141 0.120 0.166*, 45° 0° 0 0.166*, 45° 

Table 4.9.1: Fourier smoothing factors p,pD for the rotated anisotropic diffusion equation 
discretized according to (4.5.6); IBLU smoothing; n = 64. The symbol * indicates that 
the coefficients do not become constant rapidly away from the boundaries; therefore the 
corresponding value is not realistic. 

Convection-diffusion equation 
Table 4.9.3 gives results for the convection-diffusion equation, sampling ß as before. 
If is clear that IBLU is an efficient smoother for all cases. This is confirmed by the multigrid 
results presented in [107]. 

4.10    Fourier analysis of white-black and zebra Gauss-Seidel smoothing 

The Fourier analysis of white-black and zebra Gauss-Seidel smoothing requires special treat- 
ment, because the Fourier modes ip(0) as defined in Section 4.3 are not invariant under these 
iteration methods. The Fourier analysis of these methods is discussed in detail in [112]. They 
use sinusoidal Fourier modes. The resulting analysis is applicable only to special cases of the 
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e 
p 
ß = 0° 

P 
/? = 90° 

PD 
ß = 0° 

PD 
/3 = 90° 

1 0.058 0.058 0.056 0.056 

lo-1 0.108 0.133 0.102 0.116 
io-2 0.49 0.176 0.096 0.078 
10-3 0.164* 0.194 0.025* 5 x 10~3 

10~5 0.141* 0.200 0.000* 0.000 

Table 4.9.2: Fourier smoothing factors p, pr> for the rotated anisotropic diffusion equation dis- 
cretized according to (4.5.6) but with mixed derivative according to (4.5.8); IBLU smoothing; 
n = 64. The symbol * has the same meaning as in the preceding table. 

ß       PD ß 
TO0.058 0° 0.056 0° 
10_1 0.061 0° 0.058 0° 
IO"2 0.092 0° 0.090 0° 
10-3 0.173 0° 0.121 0° 
IO"5 0.200 0° IO"3 15° 

Table 4.9.3: Fourier smoothing factors p,pD for the convection-diffusion equation discretized 
according to (4.5.11); IBLU smoothing; n = 64. 

set of test problems defined in Section 4.5.   Therefore we will continue to use exponential 
Fourier modes. 

The amplification matrix 
Specializing to two dimensions and assuming n\ and 712 to be even, we have 

rf)j{9) = exp (ij0) (4.10.1) 

with 
J = (h,J2),   ja = 0,l,2,...,na-l (4.10.2) 

and 
0 6 Ö = {(0i, #2), 0a = 2nka/na, ka = -ma, -ma + 1,..., ma + 1} (4.10.3) 
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where ma — na/2 — 1. Define 

where sign(t) = -1, i < 0; sign(t) = 1,<>0. Note that 0S almost coincides with the set of 
smooth wavenumbers 0S defined by (4.4.20). As we will see, Span {^(O1), i>(02), i>(0% V(#4)} 
is left invariant by the smoothing methods considered in this section. 
Let -0(0) = (^(O1), i>(02), i>(03), V,(^4))T- the Fourier representation of an arbitrary periodic 
grid function (4.3.7) can be written as 

0e©5 

with eg a vector of dimension 4. 

If the error before smoothing is cJi/>(0), then after smoothing it is given by (A(0)ce)Ti/>(0), 
with A(9) a 4 x 4 matrix, called the amplification matrix. 

The smoothing factor 
The set of smooth wavenumbers Qs has been defined by (4.4.20). Comparison with 05 as 
defined by (4.10.4) shows that i>(0k), k = 2,3,4 are rough Fourier modes, whereas i/itf1) 
is smooth, except when 0\ = -7r/2 or 0\ = -7r/2. The projection operator on the space 
spanned by the rough Fourier modes is, therefore, given by the following diagonal matrix 

Q(0) = 

( W) \ 
1 

1 
(4.10.6) 

with 6(0) = 1 if 0\ = -7r/2 and 02 = —x/2, and 6(9) = 0 otherwise.   Hence, a suitable 
definition of the Fourier smoothing factor is 

p = mzx{X(Q(0)A(0)) : 0 e 0S} (4.10.7) 

with % the spectral radius. 
The influence of Dirichlet boundary conditions can be taken into account heuristically in a 
similar way as before.   Wavenumbers of the type (O,0|) and (#f,0), s = 1,3,4, are to be 
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disregated (note that B\ = 0 cannot occur), that is, the corresponding elements of ce are to 
be replaced by zero. This can be implemented by replacing QA by PQA with 

P(6) = 

( Pii.0) \ 
1 0 

0 

\ 
P3(0) 

P4(0)  J 

(4.10.8) 

where p1(0) = 0 if 0X = 0 and/or 02 = 0, and px(0) = 1 otherwise; p3(0) = 0 if 0a = 0 (hence 
03 = 0), and p3{0) = 1 otherwise; similarly, p4(9) = 0 if 02 = 0 (hence 0\ = 0), and p4(ö) = 1 
otherwise. The definition of the smoothing factor in the case of Dirichlet boundary conditions 
can now be given as 

PD = max {x(P(0)Q(0)A(0)) : 0 € 0S-} (4.10.9) 

Analogous to (4.4.23) a mesh-size independent smoothing factor p is defined as 

p = SuV{X(Q(0)A(0)) :0eSs} (4.10.10) 

with 0s = (-7r/2,7r/2)2. 

White-black Gauss-Seidel 
Let A have the five-point stencil given by (4.8.1) with b = f = 0. The use of white- 
black Gauss-Seidel makes no sense for the seven-point stencil (4.8.1) or the nine-point stencil 
(4.8.28), since the unknowns in points of the same colour cannot be updated independently. 
For these stencil multi-coloured Gass-Seidel can be used, but we will not go into this. 

Define grid points (ji,J2) with j\ + j2 even to be white and the remainder black. We 
will study white-black Gauss-Seide with damping. Let e° be the initial error , e1/3 the error 
after the white step, e2/3 the error after the black step, and e1 the error after damping with 
parameter u>. Then we have 

e1/3   =    -(ae°j_ea+ce°j_ei+qe'}+ei+ge,}+ea)/d,   h+h   even lQ 

e]/3   =   e?, h+h   odd. 

The relation between e2/3 and e1/3 is obtained from (4.10.11) by interchanging even and odd. 
The final error e1 is given by 

e) = ue2/3 + (1 - u)e°0 (4.10.12) 

Let the Fourier representation of e01, a = 0,1/3,2/3,1 be given by 

0e03 
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If d = ipj(Os), s = 1,2,3 or 4, then 

e]ß = n(9s)^(9%   h+j2   even 
e),3 = i>j{9'), ji+J2   odd 

(4.10.13) 

with fi(9) — —[aexp (—i92) + cexp (-i#i) + gexp {i9\) + gexp (i02)/d. Hence 

x exp [»^(fff - *■)] exp [*j2(fl5 - it)} 

so that 

1/3 
C*    =2 

{i + m -l-m     o o     \ 
/*i — 1 1 — A*i         0 0 

0                   0 1+//2 -1-M2 
\        0                   0 /Jt2-1 1-/A2    / 

c°e 9ee-s 

(4.10.14) 

(4.10.15) 

where Mi = /J,(9), fi2 = (aexp (—i92) - cexp (—i9i) - gexp (i9i) + gexp (i92))/d. If the 
black step is treated in a similar way one finds, combining the two steps and incorporating 
the damping step, 

c\ = {uA(9) + (1 - u)I)4 (4.10.16) 

with 

(fiiii + m) -m{i + m)       o o       \ 
Hi(l-f*i)     A«i(/*i — 1) 0 0 

AW = 5 
\ 

0 
0 

0 ^2(1 + ^2)   —A*2(l + /*2> 
0 M2(l - M2)       ^2(^2 "I)/ 

(4.10.17) 

Hence 

P(6)Q(0)A(Q) 

( Pi^l*i(l+I*i)   -PI8I*I(1 + I*I) 

l*i(l-l*i) 
0 
0 \ 

.0 0 
1*1(1*1-1) 0 0 

0 ^3^2(1 + ^2) -P3t*2(i +1*2) 
0 P4l*2(l-f*2) P4l*2(l*2~l)    ) 

(4.10.18) 

The eigenvalues of PQA are 

Xi(9) = 0,   X2(0) = -Mi{Mi - 1 + Pi6(l + MI)}, 

A3(0) = 0,      X4(0) = -/i2[P3 - Pi + l*2(P3 + P4)} (4.10.19) 
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and the two types of Fourier smoothing factor are found to be 

p, PD = max {|wA2(0) + 1 - u\, |wA4(0) + 1 - w| : 0 G 0*} (4.10.20) 

where pi = P3 = p4 = 1 in (4.10.19) gives p, and choosing pi, ^3, p4 as defined after equation 
(4.10.8) gives pp. 

With w = 1 we have p = PD — 1/4 for Laplace's equation [112]. This is better than 
lexicographic Gauss-Seidel, for which p = 1/2 (Section 4.7). Furthermore, obviously, white- 
black Gauss-Seidel lends itself very well for vectorized and parallel computing. This fact, 
combined with the good smoothing properties for the Laplace equation, has led to some of 
the fastest Poisson solvers in existence, based on multigrid with white-black smoothing [13], 
[113]. 

Convection-diffusion equation 
With ß = 0 equation (4.5.11) gives a = —e, c = —s — h, d = Ae + h, q = —s, g = —£, so 
that ^1,2(0, —7r/2) = (2 + P)/(4 + P), with P = h/e the mesh Peclet number. Hence, with 
p1 = p3 = p4 = 1 we have A2)4(o, -7r/2) = (2 + P)2/(4 + P)2, so that p —► 1 as P —>■ 00 for all 
u, and the same is true for pp. Hence white-black Gauss-seidel is not a good smoother for 
this test problem. 

Smoothing factor of zebra Gauss-Seidel 
Let A have the following nine-point stencil: 

[A] 
f 9 P 
c d q 
z a b 

(4.10.21) 

Let us consider horizontal zebra smoothing with damping. Define grid points (ji, j'2) with ji 
even to be white and the remainder to be black. Let e° be the initial error, e1/3 the error 
after the 'white' step, e2'3 the error after the 'black' step, and e1 the error after damping 
with parameter u>. Then we have 

C£]-er+d£l/3 + «£)+ei 
=     ~(Z£j-e1-e2 + a£j-e2 

+ b£j+ei~e2 + f£j-e1+e2 + S^j+e2 + P£j+ei+e2)> 
J2  even 

e1/3   =   6% 32  odd (4.10.22) 

(4.10.23) 

where e\ = (1,0) and e2 = (0,1). 
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The relation between e2/3 and e1/3 is obtained from (4.10.23) by interchanging even and 
odd, and the final error e1 is given by (4.10.12). 
It turns out that zebra iteration leaves certain two-dimensional subspaces invariant in Fourier 
space. In order to facilitate the analysis of alternating zebra, for which the invariant subspaces 
are the same as for white-black, we continue the use of the four-dimensional subspaces ip(0) 
introduced earlier. 

In [141] it is shown that the eigenvalues of P(6)Q{6)A{9) are 

Ai(0) = O,    A2(ö) = ip1^1(l + Mi)-^i(l-/^i),   A3(0) = O (4 10 24) 
A4(0) = |A*a(l + A*2) + |PW/*2 - 1) '    ' 

with 

Ml(6>) =    -    {z exp(-i(0i + 02)] + a, exp(-i<?2) + b exp[t'(0i - 02)] 

+   / exp[t(02 -0!)] + g exp(02) + p exp[i(0i + 02)}/ 

[c exp(—i#i) + d + g exp(iöi)] 

and /x2 = Mi(#i - 7r, 02 - 7r). 

The two types of Fourier smoothing factor are given by (4.10.20), taking A2,A4 from 
(4.10.24). 

Anisotropie diffusion equation 
For £ = 1 (Laplace's equation), u> = 1 (no damping) and p\ = pz = PA = 1 (periodic boundary 
conditions) we have H\{0) = cos 02/(2-cos #i) and /u2(0) = - cos 02/(2 + cos 6\) . One finds 
max {|A2(0)| :0e65} = |A2(TT/2, 0)| = \ and max {|A4(0)| :Ce0s-} = |A4(TT/2, TT/2)| = ±,so 
that the smoothing factor is p = p = |. 
For £ <C 1 and the rotation angle ß = 0 we have strong coupling in the vertical direction, so 
that horizontal zebra smoothing is not expected to work. We have /x2(0) = — cos 02/(l-f£ + 
£cos 6\), so that |A4(7r/2,0)| = (1 +s)~2, hence limpo > 1. Furthermore, with (p = 2n/n, 

ej,0 

we have |A4(7r/2),<^)| = cos2 f/(l + £)2, so that lim/>D > 1 — 0(h2). Damping does not help 

here. We conclude that horizontal zebra is not robust for the anisotropic diffusion equation, 
and the same is true for vertical zebra, of course. 

Convection-diffusion equation 
With convection angle ß = TT/2 in (4.5.11) we have 

/i2(0) = [(1 + P) exp (-i92) + exp (t02)]/(4 + P + 2 cos 9{) , 
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where P = h/e is the mesh Peclet number. With p4 = 1 (periodic boundary conditions) we 
have A4 = nl, so that A4(TT/2, 0) = (2 + P)2/(4 + P)2, and we see that <v\4(n/2,0) +1 - w » 1 
for P > 1, so that p ~ 1 for P > 1 for all w. Hence, zebra smoothing is not suitable for the 
convection-diffusion equation at large mesh Peclet number. 

Smoothing factor of alternating zebra Gauss-Seidel 
As we saw, horizontal zebra smoothing does not work when there is strong coupling (large 
diffusion coefficient or strong convection) in the vertical direction. This suggests the use of 
alternating zebra: horizontal and vertical zebra combined. Following the suggestion in [112], 
we will arrange alternating zebra in the following 'symmetric' way: in vertical zebra we do 
first the 'black' step and then the 'white' step, because this gives slightly better smoothing 
factors, and leads to identical results for ß = 0° and ß = 90°. The 4x4 amplification matrix 
of vertical zebra is found to be 

M») = a 
/ i/ifa + l) 

0 
0 

V viiyi -1) 

o o 
^2(^2 +1) ^2(^2 +1) 
^2(^2 -1) "2(^2 -1) 

0 0 

v\{yi +1) \ 
0 
0 

vi(v\ -1) ) 

(4.10.25) 

where 

Vl{6) = -{zexp [-i(6i + 02)] + &exp [*(0i - 02)] + cexp (-i0a) 

+gexp (töi) + /exp [*(02 - öj)] + pexp [ifa + 02)]}/ 

[a exp (-i02) + d 4- g exp (i62)] 

and 1/2(6) = ui(0i-n,02-n). We will consider two types of damping: damping the horizontal 
and vertical steps separately (to be referred to as double damping) and damping only after 
the two steps have been completed. Double damping results in an amplification matrix given 

by 
A = PQ[(1 - ud)I + udAv}[(\ - ud)I + udAh] (4.10.26) 

where Ah is given in [141]. In the case of single damping, put ud = 1 in (4.10.26) and replace 
A by 

A:(l-us)I + usA (4.10.27) 

The eigenvalues of the 4x4 matrix A are easily determined numerically. 

Anisotropie diffusion equation 
Tables 4.10.1 and 4.10.2 give results for the smoothing factors p, po for the rotated anisotropic 
diffusion equation. The worst cases for the rotation angle ß in the set {ß = kn/12, k = 
0,1,2, ...,23} are included. For the results of Table 4.10.1 no damping was used. Introduction 
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of damping (wj 7^ 1 or us ^ 1) gives no improvement. However, as shown by Table 4.10.2, if 
the mixed derivative is discretized according to (4.5.8) good results are obtained. For cases 
with e = 1 or ß = 0° or ß = 90° the two discretizations are identical of course, so for these 
cases without damping Table 4.10.1 applies. For   Table 4.10.2 ß has been sampled with an 

e 
P 
ß = 0° 90° 

PD 
ß = 0° 90° P,PD ß 

1 
10-1 

0.048 

0.102 

0.048 

0.100 

0.048 

0.480 

any 

45° 

10-2 0.122 0.121 0.924 45° 
IO-3 0.124 0.070 0.992 45° 
IQ"5 0.125 0.001 1.000 45° 

Table 4.10.1: Fourier smoothing factors p,pz> for the rotated anisotropic diffusion equation 
discretized according to (4.5.6); alternating zebra smoothing; n = 64 

OJS = 1 OJS = 0.7 

£ PiPD ß 
P,PD 
/3 = 0°,90° P,PD ß 

1 
lo-1 

0.048 
0.229 

any 

30° 

0.317 

0.302 

0.317 

0.460 

any 

34° 

10-2 0.426 14° 0.300 0.598 14° 
10-3 0.503 8° 0.300 0.653 8° 
10-5 0.537 4° 0.300 0.668 8° 
10-8 0.538 4° 0.300 0.668 8° 

Table 4.10.2: Fourier smoothing factors P,PD for the rotated anisotropic diffusion equation 
discretized according to(4.5.6) but with the mixed approximated by (4.5.8); alternating zebra 
smoothing with single damping; n = 64 

interval of 2°. Symmetry means that only ß G [0°,45°] needs to be considered. Results with 
single damping (u>s = 0.7) are included. Clearly, damping is not needed in this case and 
even somewhat disadvantageous. As will be seen shortly, this method, however, works for the 
convection diffusion test problem only if damping is applied. Numerical experiments show 
that a fixed value of u>s = 0.7 is suitable, and that there is not much difference between single 
damping and double damping. We present results only for single damping. 
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Convection-diffusion equation 
For Table 4.10.3, ß has been sampled with intervals of 2°; the worst cases are presented. The 
results of Table 4.10.3 show that alternating zebra without damping is a reasonable smoother 

0JS  = 1 UJS = 0.7 

£ p ß PD ß P,PD ß 
1 0.048 0° 0.048 0° 0.317 0U 

lo-1 
0.049 0° 0.049 0° 0.318 20° 

io-2 
0.080 28° 0.079 26° 0.324 42° 

10~3 0.413 24° 0.369 28° 0.375 44° 
IO-5 0.948 4° 0.584 22° 0.443 4° 
io-8 

0.995 2° 0.587 22° 0.448 4° 

Table 4.10.3: Fourier smoothing factors p for the convection-diffusion equation discretized 
according to (4.5.11); alternating zebra smoothing with single damping; n = 64 

for the convection-diffusion equation.   If the mesh Peclet numbers hcos ß/e or hsin ß/e 
becomes large (> 100, say), p approaches 1, but pr> remains reasonable. 
A fixed damping parameter OJS = 0.7 gives good results also for p.  The value LOS = 0.7 was 
chosen after some experimentation. 

We see that with us = 0.7 alternating zebra is robust and reasonably efficient for both 
the convection-diffusion and the rotated anisotropic diffusion equation, provided the mixed 
derivative is discretized according to (4.5.8). 

4.11    Multistage smoothing methods 

As we will see, multistage smoothing methods are also of the basic iterative method type 
(3.1.3) (of the semi-iterative kind, as will be explained), but in the multigrid literature they 
are usually looked upon as techniques to solve systems of ordinary differential equations, 
arising from the spatial discretization of systems of hyperbolic or almost hyperbolic partial 
differential equations. 

The convection-diffusion test problem (4.5.4) is of this type, but (4.5.3) is not. We will, 
therefore, consider the application of multistage smoothing to (4.5.4) only. Multistage meth- 
ods have been introduced in [74] for the solution of the Euler equations of gas dynamics, and 
as smoothing methods in a multigrid approach in [71].  For the simple scalar test problem 
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(4.5.4) multistage smoothing is less efficient than the better ones of the smoothing methods 
discussed before. The simple test problem (4.5.4), however, lends itself well for explaining 
the basic principles of multistage smoothing, which is the purpose of this section. 

Artificial time-derivative 
The basic idea of multistage smoothing is to add a time-derivative to the equation to be 
solved, and to use a time-stepping method to damp the short wavelength components of the 
error. The time-stepping method is of multistage (Runge-Kutta) type. Damping of short 
waves occurs only if the discretization is dissipative, which implies that for hyperbolic or 
almost hyperbolic problems some form of upwind discretization must be used, or an artificial 
dissipation term must be added. Such measures are required anyway to obtain good solutions. 
The test problem (4.5.4) is replaced by 

-XT ~ £(«,11 + U&) + C« 1 + SUt2 = / (4.11.1) 

Spatial discretization according to (4.5.10) or (4.5.11) gives a system of ordinary differential 
equations denoted by 

^ = -h-2Au + f (4.11.2) 
at 

where A is the operator defined in (4.5.10) or (4.5.11); u is the vector of grid function values. 

Multistage method 
The time-derivative in (4.11.2) is an artefact; the purpose is to solve Au = h2f. Hence, the 
temporal accuracy of the discretization is irrelevant. Denoting the time-level by a superscript 
n and stage number A; by a superscript (k), ap-stage (Runge-Kutta) discretization of (4.11.2) 
is given by 

tt(°)    =    un 

„(*)    =   u(o) _ wh-1 Au^-V + ckAtf,    k = 1,2,...,p 

un+i    =   U(P) (4.11.3) 

with cp — 1. Here v = At/h is the so-called Courant-Frederichs-Lewy (CFL) number. Elimi- 
nating u(k\ this can be rewritten as 

un+1 = Ppt-vhT1 A)un + Qp-x{-vh-1A)f (4.11.4) 

with the amplification polynomial Pp a polynomial of degree p, defined by 

Pp(z) = 1 + z{\ + cp_!2r(l + Cp_2z(...(l + cxz)...) (4.11.5) 

and Qp-\ is polynomial of degree p—1 which plays no role in further discussion. 
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Semi-iterative methods 
Obviously, equation (4.11.6) can be interpreted as an iterative method for solving h~2Au = / 
of the type introduced in Section 4.1 with iteration matrix 

S = Ppi-uh'1 A) (4.11.6) 

Such methods, for which the iteration matrix is a polynomial in the matrix of the system to 
be solved, are called semi-iterative methods. See [129] for the theory of such methods. For 
p = 1 (one-stage method) we have 

S = I-uh~1A (4.11.7) 

which is in fact the damped Jacobi method (Section 4.3) with diagonal scaling (diag (A) = I), 
also known as the one-stage Richardson method. As a solution method for differential equa- 
tions this is known as the forward Euler method. Following the trend in the multigrid liter- 
ature, we will analyse method (4.11.3) as a multistage method for differential equations, but 
the analysis could be couched in the language of linear algebra just as well. 

The amplification factor 
The time step At is restricted by stability. In order to assess this stability restriction and the 
smoothing behaviour of (4.11.4), the Fourier series (4.3.7) is substituted for u. It suffices to 
consider only one component u = i/f(6), 9 G 0. We have vh~x Ai]>{6) = vh~lfi(0)r/>(0). With 
A defined by (4.5.11) one finds 

H{9)   =   4e + h(\c\ + \s\) - (2e + h\c\) cos 6X 

-(2£ + /i|s|)cos 02 + ihcsin Oi + ihs sin 02 (4.11.8) 

and 
un+1 = g(0)un (4.11.9) 

with the amplification factor g(0) given by 

g(0) = Pp(-M0)/h) (4.11.10) 

The smoothing factor 
The smoothing factor is defined as before: 

p = max {\g(0)\ : 0 € 0r} (4.11.11) 

in the case of periodic boundary conditions, and 

pD = max{\g(0)\ : 9 £ 0?} (4.11.12) 
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for Dirichlet boundary conditions. 

Stability condition 
Stability requires that 

\g(0)\ < 1,   V0 G 0 (4.11.13) 

The stability domain D of the multistage method is defined as 

D = {zeC : |P„(*) < 1} (4.11.14) 

Stability requires that v is chosen such that z = -vp,(6)/h G D, V0 G 0. If p < 1 but 
(4.11.13) is not satisfied, rough modes are damped but smooth modes are amplified, so that 
the multistage method is unsuitable. 

Local time-stepping 
When the coefficients c and s in the convection-diffusion equation (4.11.1) are replaced by 
general variable coefficients v\ and v2 (in fluid mechanics applications vx,v2 are fluid velocity 
components), an appropriate definition of the CFL number is 

i/ = vAt/h,    v = \vi\ + \v2\ (4.11.15) 

Hence, if At is the same in every spatial grid point, as would be required for temporal ac- 
curacy, v will be variable if v is not constant. For smoothing purposes it is better to fix v 
at some favourable value, so that At will be different in different grid points and on different 
grids in multigrid applications. This is called local time-stepping. 

Optimization of the coefficients 
The stability restriction on the CFL number v and the smoothing factor p depend on the 
coefficients Ck- In the classical Runge-Kutta methods for solving ordinary differential equa- 
tions these are chosen to optimize stability and accuracy. For analyses see for example [115], 
[106]. For smoothing Ck is chosen not to enhance accuracy but smoothing; smoothing is also 
influenced by v. The optimum values of v and c* are problem dependent. Some analysis 
of the optimization problem involved may be found in [127]. In general, this optimization 
problem can only be solved numerically. 

We proceed with a few examples. 

A four-stage method 
Based upon an analysis of Catalano and Deconinck (prive-communication), in which optimal 
coefficients Ck and CFL number v are sought for the upwind discretization (4.5.11) of (4.11.1) 
with e = 0, we choose 

ex = 0.07,    c2 = 0.19,    c3 = 0.42,    v = 2.0 (4.11.16) 
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ß = 0°    ß = \5°    ß = 30u    ß = 45L 

0       1.00 
IQ-5    0.997 

0.593 
0.591 

0.477 
0.482 

0.581 
0.587 

Table 4.11.1:  Smoothing factor p for (4.11.1) discretized according to (4.5.11); four-stage 
method; n = 64 

Table 4.11.1 gives some results. 

It is found that po differs very little from p. It is not necessary to choose ß outside 
[0°,45°], since the results are symmetric in ß. For s ~ 10-3 the method becomes unstable 
for certain values of ß. Hence, for problems in which the mesh Peclet number varies widely 
in the domain it would seem necessary to adopt Ck and v to the local stencil. With e = 0 all 
multistage smoothers have p = 1 for grid-aligned flow (ß = 0° or 90°) : waves perpendicular 
to the flow are not damped. 

A five-stage method 
The following method has been proposed in [73] for a central discretization of the Euler 
equations of gas dynamics: 

Cl = 1/4,    c2 = 1/6,    c3 = 3/8,    c4 = 1/2 (4.11.17) 

The method has also been applied to the compressible Navier-Stokes equations in [75]. We 
will apply this method to test problem (4.11.1) with the central discretization (4.5.10). Since 
p,{6) = ih(csm 6\ + 5sin 02) we have /i(0,7r) = 0, hence |fir(0,7r)| = 1, so that we have no 
smoother. An artificial dissipation term is therefore added to (4.11.2), which becomes 

^ = -h-2Au-h~1Bu + f 
at 

(4.11.18) 

with 

[B] = X 

1 
-4 

1    -4    12    -4   1 
-4 

1 

(4.11.19) 

where x is a parameter. 
We have B^{9) = »/(ö)^(ff) with 
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ß      0»      15»     30u     45" 
p    0.70    0.77    0.82    0.82 

Table 4.11.2: Smoothing factor p for (4.11.1) discretized according to (4.5.10); five-stage 

method; n = 64 

r?(0) = 4x[(l - cos 0a)
2 + (1 - cos 92f) (4.11.20) 

For reasons of efficiency the artificial dissipation term is updated in [73] only in the first two 
stages. This gives the following five-stage method: 

u(k)    =   „(oj-c^fc-iA + B)«**-1),        * = 1,2 (4 1121^ 
«(*)    =-uW-cku(h-1Aulk-V + BuM,   k = 3,4,5 K'    '    ' 

The amplification polynomial now depends on two arguments zx,z2 defined by zx = vh~lp{9), 
z2 = vrf{6), and is given by the following algorithm: 

Pi = 1 - Ciizi + Z2),      P2 = 1 - C2(Z! + Z2)Pl 

P3 = 1 - c3ztP2 - c3z1P2 - C3Z2P1,    P4 = 1-- C4Z1P3 - C4Z2P1 (4.11.22) 
Ph{z\-,z2) = \- z-iPA-Z2PX 

In one dimension Jameson and Baker [73] advocate v - 3 and % = °-04; for stability v should 
not be much larger than 3. In two dimensions max {vhT1 |/x(0)|} = v(c + $) < vy/2. Choosing 
Z/A/2 = 3 gives v ~ 2.1. With v = 2.1 and % = 0.04 we obtain the results of Table 4.11.2, for 
both e = 0 and e = 10~5. Again, pD ~ p. This method allows only e < 1; for example, for 

£ = IQ"3 and ß = 45° we find p = 0.96. 
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Final remarks 
Advantages of multistage smoothing are excellent vectorization and parallelization poten- 
tial, and easy generalization to systems of differential equations. Multistage methods are in 
widespread use for hyperbolic and almost hyperbolic systems in computational fluid dynam- 
ics. They are not, however, robust, because, like all point-wise smoothing methods, they do 
not work when the unknowns are strongly coupled in one direction due to high mesh aspect 
ratios. Also their smoothing factors are not small. Various strategems have been proposed in 
the literature to improve multistage smoothing, such as residual averaging, including implicit 
stages, and local adaptation of cj., but we will not discuss this here; see [73], [75] and [127]. 

4.12    Concluding remarks 

In this chapter Fourier smoothing analysis has been explained, and efficiency and robustness 
of a great number of smoothing methods has been investigated by determining the smoothing 
factors p and pp for the two-dimensional test problems (4.5.3) and (4.5.4). The following 
methods work for both problems, assuming the mixed derivative in (4.5.3) is suitably dis- 
cretized, either with (4.5.6) or (4.5.8): 

(i) Damped alternating Jacobi; 

(ii) Alternating symmetric line Gauss-Seidel; 

(iii) Alternating modified incomplete point factorization; 

(iv) Incomplete block factorization; 

(v) Alternating damped zebra Gauss-Seidel. 

Where damping is needed the damping parameter can be fixed, independent of the problem. 
It is important to take the type of boundary condition into account. The heuristic way in 
which this has been done within the framework of Fourier smoothing analysis correlates well 
with multigrid convergence results obtained in practice. 

Generalization of incomplete factorization to systems of differential equations and to non- 
linear equations is less straightforward than for the other methods. Application to the incom- 
pressible Navier-Stokes equations has, however, been worked out in [144], [146], [148], [150] 
and [149], and is discussed in [141]. 

Of course, in three dimensions robust and efficient smoothers are more elusive than in two 
dimensions. Incomplete block factorization, the most powerful smoother in two dimensions, 
is not robust in three dimensions [81].   Robust three-dimensional smoothers can be found 
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among methods that solve accurately in planes (plane Gauss-Seidel) [114]. For a successful 
multigrid approach to a complicated three-dimensional problem using ILU type smoothing, 
see [124], [122], [125], [123]. 

5    Prolongation, restriction and coarse grid approximation 

5.1    Introduction 

In this chapter the transfer operations between fine and coarse grids are discussed. 

Fine grids 
The domain ti in which the partial differential equation is to be solved is assumed to be the 
d-dimensional unit cube. In the case of vertex-centered discretization, the computational grid 
is defined by 

G = {x e JRd :x = jh, j = (ji,J2,-,3d), h = (hx,h2,...,hd), 

ja = 0,l,2,...,na, ha = l/na, a = 1,2, ...,d} (5.1.1) 

In the case of cell-centered discretization, G is defined by 

G = {x e Md : x = (j - s)h, j = (ji, J2, ...,jd), s = (1,1,..., l)/2, 

h = (hi,h2,...,hd), ja = 1,2,...,na, ha - l/na, a = 1,2,...,d} (5.1.2) 

These grids, on which the given problem is to be solved, are called fine grids. Without danger 
of confusion, we will also consider G to be the set of d-tuples j occuring in (5.1.1) or (5.1.2). 

Coarse grids 
In this chapter it suffices to consider only one coarse grid.   From the vertex-centered grid 
(5.1.1) a coarse grid is derived by vertex-centered coarsening, and from the cell-centered grid 
(5.1.2) a coarse grid is derived by cell-centered coarsening. Coarse grid quantities will be 
identified by an overbar. Vertex-centered coarsening consists of deleting every other vertex in 
each direction. Cell-centered coarsening consists of taking unions of fine grid cells to obtain 
coarse grid cells. Figures 5.1.1 and 5.1.2 give an illustration. It is assumed that na in (5.1.1) 
and (5.1.2) is even. 
Denote spaces of grid function by U: 

U = {u:G^ R},    Ü = {ü:G^M} (5.1.3) 

The transfer operators are denoted by P and R: 

P-.Ü^U,    R:U^Ü (5.1.4) 
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Figure 5.1.1: Vertex-centered and cell-centered coarsening in one dimension. (• grid points) 

P is called prolongation, and R restriction. 

Here only vertex-centered coarsening will be discussed. For cell-centered coarsening, see 
[141]. 

5.2     Stencil notation 

In order to obtain a concise description of the transfer operators, stencil notation will be used. 

Stencil notation for operators of type U —► U 
Let A : U —► U be a linear operator. Then, using stencil notation, Au can be denoted by 

(Au)i=   Y^  A{hJ)ui+h    'SG (5.2.1) 

with 7L = {0,±1,±2,...}. The subscript i = (iui2, ...,id) identifies a point in the computa- 
tional grid in the usual way; cf. Figure 5.1.2 for the case d = 2. 
The set SA defined by 

SA = {je Zd:3ieG   with    A(i,j)^0} (5.2.2) 

is called the structure of A. The set of values A(i,j) with j G SA is called the stencil of A 
at grid point i. Often the word 'stencil' refers more specifically to an array of values denoted 
by [A]i in which the values of A(i,j) are given; for example, in two dimensions, 

[A)i = 
A(i,-e1 + e2)     A(i,e2) 

A(i,-ei) A(i,0) A(i,e{) 
A(i,-e2)   A(i,e1-e2) 

(5.2.3) 

where e-y = (1,0) and e2 = (0,1).  For the representation of three-dimensional stencils, see 
[141]. 
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Figure 5.1.2: Vertex-centered and cell-centered coarsening in two dimensions. (• grid points.) 

Example 5.2.1 One-dimensional discrete Laplacian: 

[A],- = Ä-2[-l   2    -1] (5.2.4) 

Stencil notation for restriction operators 
Let R:U^Ü be a restriction operator. Then, using stencil notation, Ru can be represented 

by 
(An),- = X) Ä(*«iW+i'  *e G (5.2.5) 

&%d 

Example 5.2.2 Consider vertex-centered grids G,G for d = 1 as defined by (5.1.1) and as 

depicted in Figure 5.1.1. Let R be defined by 

Rui = WiU2i-i + -u2i + eiu2i+i,   i = 0,l,...,n/2 (5.2.6) 

82 



with w0 = 0; Wi = 1/4, i ^ 0; e,- = 1/4, i ^ n/2; en/2 = 0- Then we have (cf. (5.2.5)): 

R(i,-l) = Wi,    Ä(«,0) = l/2,    JR(*,l) = e,- (5.2.7) 

or 
[R]i = [wi   1/2   e,-] (5.2.8) 

We can also write [Ä] = [1 2 l]/4 and stipulate that stencil elements that refer to values 
of u at points outside G are to be replaced by 0. 

The relation between the stencil of an operator and that of its adjoint 
For prolongation operators, a nice definition of stencil notation is less obvious than for restric- 
tion operators. As a preparation for the introduction of a suitable definition we first discuss 
the relation between the stencil of an operator and its adjoint. Define the inner product on 
U in the usual way: 

(u,v)=   ^2 uivi (5.2.9) 

where u and v are defined to be zero outside G. Define the transpose A* of A : u —► U in 
the usual way by 

(Ait, v) = (tt, A*v),   Vu,v(EU (5.2.10) 

Defining A(i,j) = 0 for i / G or j ^ SA we can write 

(Au,v) = Y^    £    A(i,j)ui+jVi = J2    £    A(i,k-i)ukVi 
i,jeZd i,ke2Zd 

=    E   uk   E   A(i,k-i)vi = (u,A*v) 
ke2Zd     iz2Zd 

(5.2.11) 

with 

(A*v)k=   Yl A(i,k-i)vi=   Yl  A(i + k,-i)vk+i=   Y, A*(k,i)vk+i (5.2.12) 
ie%d ieZd iz2Ld 

Hence, we obtain the following relation between the stencils of A and A*: 

A*(k,i) = A(k + i,-i) (5.2.13) 

Stencil notation for prolongation operators 
If R : U —► Ü, then R* : Ü —>• U is a prolongation. The stencil of R* is obtained in similar 
fashion as that of A*. Defining R(i,j) = 0 for i £ G or j fe SR, we have 

(Ru,v) = £    E    R(iJ)u2i+jVi = E    E   . R(h k ~ 2i)u>kVi 
i,jeZd 

=   E   uk   E 
i>3E% i,k6%> (5 2 14s) 
£   uk   E   Ä(*,fc-2t)«,- = (it,Ä*t>) V""    ; 
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with R* :U -4P defined by 

(R*v)k=   Y, R(i,k-2i)vi (5.2.15) 

ieZd 

Equation (5.2.15) shows how to define the stencil of a prolongation operator P : U -»■ U: 

(Pü)i=   £  P\hi-lj)üi (5-2.16) 

Hence, a convenient way to define P is by specifying P*. Equation (5.2.16) is the desired 
stencil notation for prolongation operators. 
Suppose a rule has been specified to determine Pü for given ü, then P*(k, m) can be obtained 
as follows. Choose ü = 6k as follows 

6i = l,   § = 0,   j?k (5.2.17) 

Then (5.2.16) gives P*(k,i- 2k) = (PS)u or 

P*(k,j) = (P6k)2k+j,    keG,jeG. (5.2.18) 
— k 

In other words, [P*]fc is precisely the image of 6   under P. 
The usefulness of stencil notation will become increasingly clear in what follows. 

Exercise 5.2.1 Verify that (5.2.13) and (5.2.15) imply that, if A and R are represented by 
matrices, A* and R* follow from A and R by interchanging rows and columns. (Remark: for 
d = 1 this is easy; for d > 1 this exercise is a bit technical in the case of R). 

Exercise 5.2.2 Show that if the matrix representation of A : U -► U is symmetric, then its 
stencil has the property A(k, i) = A(k + i, -i). 

5.3    Interpolating transfer operators 

We begin by giving a number of examples of prolongation operators, based on interpolation. 

Let d = 1, and let G and G be vertex-centred (cf. Figure 5.1.1). Defining P : Ü -»• U by 
linear interpolation, we have 

{Pu)2i = «i,    (Ptt)2,-+i = jjte + «M-i) (5-3-1) 

Using (5.3.1) we find that the stencil of P* is given by 

[P*] = ^[1 2 1] (5.3.2) 
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In two dimensions, linear interpolation is exact for functions /(zi,^) = lj^i?^* and takes 
place in triangles, cf. Figure 5.3.1. Choosing triangles ABD and ACD for interpolation, one 
obtains UA = üA, ua = \{üA + üß), ue = \{üA + öD) etc.  Alternatively, one may choose 

C d D 
bee 
A    a   B 

Figure 5.3.1: Interpolation in two dimensions, vertex-centered grids. (Coarse grid point: 
capital letters; fine grid points: capital and lower case letters.) 

triangles ABC and BDC, which makes no essential difference. Bilinear interpolation is exact 
for functions /(3:1,0:2) = ^,^i,X2,x\X2, and takes place in the rectangle ABCD. The only 
difference with linear interpolation is that now ue = \{UA + UB + uc + UJJ). In other words: 
u2i+ei+e2 = \{üi + üi+ei + «i+e2 + üi+ei+e2), with ea = (1,0) and e2 = (0,1). 
The stencil for bilinear interpolation is 

[P* 

For the three-dimensional case, see [141]. 

1 2    1 
2 4   2 
1    2    1 

(5.3.3) 

Restrictions 
We can be brief about restrictions. One may simply take 

R = aP* (5.3.4) 

with a a suitable scaling factor. The scaling of R, i.e. the value of J2j R(hj)>1S important. 
If Ru is to be a coarse grid approximation of u (this situation occurs in non-linear multigrid 

methods, which will be discussed later, then one should obviously have J2jR(hJ) = 1- If 
however, R is used to transfer the residual r to the coarse grid, then the correct value of 
£\- R(i,j) depends on the scaling of the coarse and fine grid problems. The rule is that the 
coarse grid problem should be consistent with the differential problem in the same way as 
the fine grid problem. This means the following. Let the differential equation to be solved be 
denoted as 

Lu = s (5.3.5) 

and the discrete approximation on the fine grid by 

Au = b (5.3.6) 
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Suppose that (5.3.6) is scaled such that it is consistent with haLu = has with h a measure of 
the mesh-size of G. Finite volume discretization leads naturally to a = d with d the number 
of dimensions; often (5.3.6) is scaled in order to get rid of divisions by h. Let the discrete 
approximation of (5.3.5) on the coarse grid G be denoted by 

ÄÜ = Rb (5.3.7) 

and let A approximate haL. Then Rb should approximate has. Since b approximates has, 
we find a scaling rule, as follows. 

Rule scaling of R: 
Y,R(i,j) = (h/h)a (5.3.8) 

3 

We emphasize that this rule applies only if R is to be applied to right-hand sides and/or 
residuals. Depending on the way the boundary conditions are implemented, at the boundaries 
a may be different from the interior. Hence the scaling of R should be different at the 
boundary. Another reason why £■ R(i,j) may come out different at the boundary is that 
use is made of the fact that due to the boundary conditions the residual to be restricted is 
known to be zero in certain points. 
A restriction that cannot be obtained by (5.3.4) with interpolating prolongation is injection: 

(Ru)i = au2i (5.3.9) 

Accuracy condition for transfer operators 
The proofs of mesh-size independent rate of convergence of MG assume that P and R satisfy 
certain conditions [21], [57]. The last reference (p. 149) gives the following simple condition: 

mp + mji > 2m (5.3.10) 

A necessary condition (not discussed here) is given in [66]. Here orders mp,mp, of P and R 
are defined as the highest degree plus one of the polynomials that are interpolated exactly by 
P or sR*, respectively, with s a scaling factor that can be chosen freely, and 2m is the order 
of the partial differential equation to be solved. For example, (5.3.9) has TTIR = 0, (5.3.3) has 
mp = 2. Practical experience (see e.g. [139]) confirms that (5.3.10) is necessary. 
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Operator-dependent transfer operators 
If the coefficients in the differential equations are discontinuous across certain interfaces be- 
tween subdomains of different physical properties, then u fc Cx(fi), and linear interpolation 
across discontinuities in ui0t is inaccurate. (See [141] for more details). Instead of interpola- 
tion, operator-dependent prolongation has to be used. Such prolongations aim to approximate 
the correct jump condition by using information from the discrete operator. They are required 
only in vertex-centered multigrid, but not in cell-centered multigrid, as shown in [141], where 
a full discussion of operator-dependent transfer operators may be found. 

5.4    Coarse grid Galerkin approximation 

The problem to be solved on the fine grid is denoted by 

Au - f (5.4.1) 

The two-grid algorithm (2.3.14) requires an approximation A of A on the coarse grid. There 
are basically two ways to chose Ä, as already discussed in Chapter 2. 

(i) Discretization coarse grid approximation(DCA): like A, A is obtained by discretization 
of the partial differential equation. 

(ii)  Galerkin coarse grid approximation (GCA): 

A = RAP (5.4.2) 

A discussion of (5.4.2) has been given in Chapter 2. 
The construction of A with DCA does not need to be discussed further. We will use stencil 
notation to obtain simple formulae to compute Ä with GCA. The two methods will be 
compared, and some theoretical back-ground will be given. 

Explicit formula for coarse grid operator 
The matrices R and P are very sparse and have a rather irregular sparsity pattern. Stencil 
notation provides a very simple and convenient storage scheme. Storage rather than repeated 
evaluation is to be recommended if R and P are operator-dependent. We will derive formulae 
for A using stencil notation. We have (cf. (5.2.16)) 

(Pü) = Y;P*Ü,i-2J)üj (5.4.3) 
3 

Unless indicated otherwise, summation takes place over 2Zd. Equation (5.2.1) gives 

{APu)i = J2 A(t, k)(Pu)i+k = E E Mh k)P*U, i + k- 2j)üj (5.4.4) 
k k      j 
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Finally, equation (5.2.5) gives 

(RAPu)i   =   SÄ(J,ro)(AFü)2i+m 
m (5 4 5) 

m   k    j 

With the change of variables j = i + n this becomes 

(Au),- = Y, J2 1L ä(*' m)A(2i+m' A;)p*(i+n'm+fc ~ 2n)««"+»      (5-4-6) 

from which it follows that 

A(i, n) = Y^ S Ä(*' m)A(2i + mi k)P*(l + n,m + k-2n) (5.4.7) 

For calculation of A by computer the ranges of m and & have to be finite. Sj± is the structure 
of A as defined in (5.2.2), and SR is the structure R, i.e. 

SR = {jeZSd:3ieG with   Ä(t,i) ^ 0} (5.4.8) 

Equation (5.4.7) is equivalent to 

Ä(t,n)=   £     5^  fi(i,m)A(2i + m,Ä;)P*(i + n,m + fc-2n) (5.4.9) 

With this formula, computation of A is straightforward, as we will now show. 

Calculation of coarse grid operator by computer 
For efficient computation of A it is useful to first determine S^. This can be done with the 
following algorithm 

Algorithm STRURAP 

comment  Calculation of S^ 
begin S^ =/0 

for q G Sp* do 
for m G SJI do 

for k e Sj± do 
begin n = (m+ k - q)/2 

if (n € Zd) then S^ = ^Un 
end 

od od od 
endSTRURAP 



Having determined Si it is a simple matter to compute A. This can be done with the fol- 
lowing algorithm. 

Algorithm CALRAP 

comment Calculation of A 
begin A = 0 

for n G Sj. do 
for m G SJI do 

for k G Sj± do 
q = m + k — 2n 

if q G Sp* then 
Gi_={ieG:2i + meG}n{ieG:i + n6G} 

for i G G\ do 
Ä(», n) = A(i, n) + R(i, m)A(2i + m, k)P*(i + n, q) 

od od od 
end CALRAP 

Keeping computation on vector and parallel machines in mind, the algorithm has been de- 
signed such that the innermost loop is the longest. 

To illustrate how G\ is obtained we given an example in two dimensions. Let G and G be 
given by 

G   =   {ieZ2:0<h <2nj, 0<i2<2n2} 

G   =    {ie 7L1 :0 < ti <ni, 0 < i2 <n2) 

Then i G G\ is equivalent so 

max(-.7'a,-ma/2,0) < ia < min(na - ma/2,na - ja,na)   a = 1,2 

It is easy to see that the inner loop vectorizes along grid lines. 

Comparision of discretization and Galerkin coarse grid approximation 
Although DCA seems more straightford, GCA has some advantages. The coarsest grids em- 
ployed in multigrid methods may be very coarse. On such very coarse grids DCA may be 
unreliable if the coefficients are variable, because these coefficients are sampled in very few 
points. An example where multigrid fails because of this effect is given in [137]. The situation 
can be remedied by not sampling the coefficients pointwise on the coarse grids, but taking 
suitable averages.  This is, however, precisely that GCA does accurately and automaticaly. 

89 



For the same reason GCA is to be used for interface problems (discontinuous coefficients), 
in which case the danger of pointwise sampling of coefficients is most obvious. Another ad- 
vantage of GCA is that it is purely algebraic in nature; no use in made of the underlying 
differential equation. This opens the possibility of developing autonomous or 'black box' 
multigrid subroutines, requiring as input only a matrix and right-hand side. On the other 
hand, for non-linear problems and for systems of differential equations there is no general way 
to implement GCA. Both DCA and GCA are in widespread use. 

Structure of coarse grid operator stencil 
Galerkin coarse grid approximation will be useful only if S^ is not (much) larger than SA, 

otherwise the important property of MG, that computing work is proportional to the number 
of unknowns, may get lost. For examples and further discussion of CGA, including the possible 
loss of the if-matrix property on coarse grids, see [141]. 

6    Multigrid algorithms 

6.1 Introduction 

The order in which the grids are visited is called the multigrid schedule. Several schedules will 
be discussed. All multigrid algorithms are variants of what may be called the basic multigrid 
algorithm. This basic algorithm is nonlinear, and contains linear multigrid as a special case. 
The most elegant description of the basic multigrid algorithm is by means of a recursive 
formulation. FORTRAN does not allow recursion, thus we also present a non-recursive for- 
mulation. This can be done in many ways, and various flow diagrams have been presented in 
the literature. If, however, one constructs a structure diagram not many possibilities remain, 
and a well structured non-recursive algorithm containing only one goto statement results. 
The decision whether to go a finer or to a coarser grid is taken in one place only. 

6.2 The basic two-grid algorithm 

Preliminaries 
Let a sequence {Gk : k — 1,2,...,K} of increasingly finer grids be given. Let Uk be the 
set of grid functions Gk —► M on Gk; a grid function Uk 6 Uk stands for m functions in 
the case where we want to solve a set of equations for m unknowns. Let there be given 
transfer operators Pk : Uk~l -»■ Uk (prolongation) and Rk : Uk —>■ Uk~1 (restriction). Let 
the problem to be solved on Gk be denoted by 

Lk{uk) = bk (6.2.1) 
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The operator Lk may be linear or non-linear. Let on every grid a smoothing algorithm be 
defined, denoted by S(u,v,f,u,k). S changes an initial guess uk into an improved approxi- 
mation vk with right-hand side fk by vk iterations with a suitable smoothing method. The 
use of the same symbol uk for the solution of (6.2.1) and for approximations of this solution 
will not cause confusion; the meaning of uk will be clear from the context. On the coarse 
grid Gl we sometimes wish to solve (6.2.1) exactly; in general we do not wish to be specific 
about this, and we write S(u,v, f, •, 1) for smoothing or solving on G1. 

The nonlinear two-grid algorithm 
Let us first assume that we have only two grids Gk and Gk~x. The following algorithm is a 
generalization of the linear two-grid algorithm discussed in Section 2.3. Let some approxima- 
tion uk of the solution on Gk be given. How uk may be obtained will be discussed later. The 
non-linear two-grid algorithm is defined as follows. Let /   = b . 

Subroutine   TG (ü, u, /, k) 
comment nonlinear two-grid algorithm 
begin 

(1) S(u,u,f,v,k) 
(2) rk = fk- Lk{uk) 
(3) Choose-üfc_1, 5fc_i 
(4) f-1 = Lk~x (Ü*-1) + 5fc_a Ä*"1 rk 

(5) S(u,u,f,;k-1) 
(6) tt* = tifc + (l/a*_1)P*(tt

fc-1-tt*-1) 
(7) S(u,u,f,p,k) 

end of TG 

A call of TG gives us one two-grid iteration. The following program performs ntg two-grid 
iterations: 

Choose ü 
fk = bk 

for i = 1 step 1 until ntg do 
TG (u,u,f,k) 
u — u 

od 

Discussion 
Subroutine TG is a straightforward implementation of the basic multigrid principles discussed 
in Chapter 2, but there are a few subtleties involved. 

We proceed with a discussion of subroutine TG. Statement (1) represents vk smoothing it- 
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erations (pre-smoothing), starting from an initial guess ük. In (2) the residual rk is com- 
puted; rk is going to steer the coarse grid correction. Because 'short wavelength accuracy' 
already achieved in uk must not get lost, uk is to be kept, and a correction 8uk (containing 
'long wavelength information') is to be added to uk. In the non-linear case, rk cannot be 
taken for the right-hand side of the problem for Suk; L(6uk) = rk might not even have a 
solution. For the same reason, fifc_1rfc cannot be the right-hand side for the coarse grid 
problem on Gfc_1. Instead, it is added in (4) to Lk~1(ük~1), with üfc_1 an approximation 
to the solution of (6.2.1) in some sense (e.g. Pük~x ~ solution of equation (6.2.1). Ob- 
viously, Lk~i{uk~l) = Lk~1(ük~1) has a solution, and if Rk~lrk is not too large, then 
Lk~l{uk~l) = Z^-1^-1) + Äfc_1rfc can also be solved, which is done in statement (5) (ex- 
actly or approximately). 

fik-\rk wjyj ke smav] when ü
k is close to the solution of equation (6.2.1), i.e. when the 

algorithm is close to convergence. In order to cope with situations where Rk~lrk is not smal 
enough, the parameter s^-i is introduced. By choosing sfc_i small enough one can bring / ~ 
arbitrarily close to Lk~1(ük~1). Hence, solvability of Lk~1(uk-1) = /fc_1 can be ensured. 
Furthermore, in bifurcation problems, uk~x can be kept on the same branch as ü^-1 by 
means of Sk-\- In (6) the coarse grid correction is added to uk. Omission of the factor l/^-i 
would mean that only part of the coarse grid correction is added to uk, which amounts to 
damping of the coarse grid correction; this would slow down convergence. Finally, statement 
(7) represents fik smoothing iterations (post-smoothing). 

The linear two-grid algorithm 
It is instructive to see what happens when Lk is linear. It is reasonable to assume that then 
Z/fc_1 is also linear. Furthermore, let us assume that the smoothing method is linear, that is 
to say, statement (5) is equivalent to 

uk-\ = ük-i + Bk-i(fk-i _ L*-iÄ*-i) (6.2.2) 

with Bk~l some linear operator. With fk~l from statement (4) this gives 

u^1 = Ü*-1 + sk-1B
k-1Rk-1rk (6.2.3) 

Statement (6) gives 
uk = uk + PkBk-1Rk~1rk (6.2.4) 

and we see that the coarse grid correction pkBk~1Rk~1rk is independent of the choice of 
Sk-i and ük~x in the linear cas. Hence, we may as well choose Sk-\ = 1 and -üfc_1 = 0 in the 
linear case. This gives us the following linear two-grid algorithm. 
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Subroutine  LTG  (ü, u, f, k) 
comment linear two-grid algorithm 
begin 

S(u,u,f,v,k) 
rk = fk - Lkuk 

fk-\ _ Rk-\rk 

uk~l = 0 
S(u,u,f,»,k- 1) 
uk = uk + Pkuk~l 

S(u,u,f,n,k) 
end of LTG 

Choice of ük~1 and sk-\ 
There are several possibilities for the choice of ü      . One possibility is 

uk~l = Rk~\k (6.2.5) 

where R      is a restriction operator which may or may not be the same as R ~ . 

With the choice Sk-i = 1 this gives us the first non-linear multigrid algorithm that has 
appeared, the FAS (full approximation storage) algorithm proposed by Brandt [20]. The more 
general algorithm embodied in subroutine TG, containing the parameter s^-i and leaving the 
choice of «jfe-i open, has been proposed by Hackbusch [54], [49], [57]. In principle it is possible 
to keep ük-\ fixed, provided it is sufficiently close to the solution of Lfc_1(ttfc-1) = fefc_1. This 
decreases the cost per iteration, since jLfc_1(üfc_1) needs to be evaluated only once, but the 
rate of convergence may be slower than with uk~l defined by (5). We will not discuss this 
variant. Another choice of uh~l is provided by nested iteration, which will be discussed later. 
Hackbusch [54], [49], [57] gives the following guidelines for the choice of ttfc_1 and the param- 
eter Sk-\. Let the non-linear equation Lfc_1(ttfc-1) = fk~l be solvable for ||/fc_1|| < pk-i- 
Let \\Lk-1(uk-l)\\ < pk-i/2. Choose sk-i such that ||5A;_ifiA:_1r'l|| < pk-i/2, for example: 

sk-^ = \pk^l\\Rk-lrk\\ . (6.2.6) 

Then ||/fc_1|| < pk-i, so that the coarse grid problems has a solution. 

6.3    The basic multigrid algorithm 

The recursive non-linear multigrid algorithm 
The basic multigrid algorithm follows from the two-grid algorithm by replacing the coarse 
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grid solution statement (statement (5) in subroutine TG) by jk multigrid iterations.  This 
leads to 

(6) 

(7) 
(8) 

Subroutine  MG1  (u,u,f,k,j) 
comment recursive non-linear multigrid algorithm 
begin 

if (k eq 1) then 

(1) S(u,u,f,»,k) 
else 

(2) S(ü,u,f,v,k) 

(3) rk = fk- Lk{uk) 

(4) Choose ük~1,Sk-i 

(5) f'1 = Lk~l{ük-1) + sk_lR
k-1rk 

for i = 1 step luntil jk do 
MG1 ■(«,«,/,*-1,7) 

od 
uk = uk + {llsk_1)P

k{uk-1 - uk~l) 
S(u,u,f,/j,,k) 

endif 
end ofMGl 

After our discussion of the two-grid algorithm, this algorithm is self explanatory. 
The following program carries out nmg multigrid iterations, starting on the finest grid G   : 

Program 1: 
Choose ü 
fK = bK 

for i = 1 step 1 until nmg do 
MG1 («,«,/,#, 7) 

od 
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The recursive linear multigrid algorithm 
The linear multigrid algorithm follows easily from the linear two-grid algorithm LTG: 

Subroutine  LMG {u,u,f,k) 
comment recursive linear multigrid algorithm 
begin 

if (& = 1) then 
S(u,u,f,»,k) 

else 
S(u,u,f,v,k) 

fk-1 

uk-' 

fk - Lkuk 

= Rk~xrk 

= 0 
for i = l step 1 until 

LMG {u,u,f,k- 
uk~x — uk~l 

Ik do 

-1) 

od 
uk = = uk + Pkuk~l 

end 

S(u 
endif 
LMG 

u,f,fi,k) 

Here ü plays the role of an initial guess. 

Multigrid schedules 
The order in which the grids are visited is called the multigrid schedule or multigrid cycle. 
If the parameters fk, k = 1,2,...,K — 1 are fixed in advance we have a fixed schedule; if fk 
depends on intermediate computational results we have an adaptive schedule. Figure 6.3.1 
shows the order in which the grids are visited with 7^ = 1 and 7^ = 2, k = 1,2,...,K — l,in the 
case K = 4. A dot represents a smoothing operation. Because of the shape of these diagrams, 
these schedules are called the V-, W- and sawtooth cycles, respectively. The sawtooth cycle is 
a special case of the V-cycle, in which smoothing before coarse grid correction (pre-smoothing) 
is deleted. A schedule intermediate between these two cycles is the F-cycle. In this cycle coarse 
grid correction takes place by means of one F-cycle followed by one V-cycle. Figure 6.3.2 gives 
a diagram for the F-cycle, with K = 5. 

Recursive algorithm for V-, F- and W-cycle 
A version of subroutine MG1 for the V-, W- and F-cycles is as follows. The parameter 7 is 
now an integer instead of an integer array. 
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Y*= 1 Jk= 1 

Figure 6.3.1: V-, W- and sawtooth-cycle diagrams. 

Subroutine  MG2 (ü,u,f,k,j) 
comment nonlinear multigrid algorithm V-, W-, or F-cycle 
begin 

if (k eq 1) then 
S(u,u,f,»,k) 
if (cycle eq F) then 7=1 endif 

else 
A 
for i = 1 step 1 until 7 do 

MG2 (ü,u,f,k-l,f) 
od 
B 
if (k eq K and cycle  eq F) then 7 = 2 endif 

endif 
end MG2 

Here A and B represent statements (2) to (5) and (7) and (8) in subroutine MG1.   The 
following program carries out nmg V-, W-, or F-cycles. 
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Figure 6.3.2: F-cycle diagram. 

Program 2: 
Choose uK 

fK = bK 

if  (cycle eq W  or  cycle  eq  F)  then 7 = 2 else 7 = 1 
/or i = 1 step 1 until  nmg do 

MG2 («,«,/, A", 7) 
od 

Adaptive schedule 
An example of an adaptive strategy is the following. Suppose we do not carry out a fixed 
number of multigrid iterations on level Gk, but wish to continue to carry out multigrid 
interactions, until the problem on Gk is solved to within a specified accuracy. Let the accuracy 
requirement be 

||L V) - /*ll <£k = Sk\\Lk+\uk+1) - /fc+1|| (6.3.1) 

with 6 6 (0,1) a parameter. 

At first sight, a more natural definition of ek would seem to be ek = <5||/fe||. Since fk does 
not, however, go to zero on convergence, this would lead to skipping of coarse grid correction 
when uk+1 approaches convergence. Analysis of the linear case leads naturally to condition 
(6.3.1). An adaptive multigrid schedule with criterion (6.3.1) is implemented in the following 
algorithm. In order to make the algorithm finite, the maximum number of multigrid iterations 
allowed is 7. 
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(1) 

Subroutine  MG3 (ü,u,f,k) 
comment recursive nonlinear multigrid algorithm with adaptive 
schedule 
begin 

if (k eq 1) then 
S(ü,u,f,;k) 

else 

tk-i = \\rk\\-ek 

A 

ejb_i = Ssk-i\\r
k\\ 

rik-i = 1 
while (tk-i > 0 and nk-\ > 0) 

MG3 (£,u,/,fc-l) 

tfc-^lli*-1^*-1)-/*-1!!-^-! 
od 
B 

endif 
end      MG3 

Here A and B stand for the same groups of statements as in subroutine MG2. The purpose 
of statement (1) is to allow the possibility that the required accuracy is already reached by 
pre-smoothing on Gk, so that coarse grid correction can be skipped. The following program 
solves the problem on GK within a specified tolerance, using the adaptive subroutine MG3: 

Program 3 : 
Choose uK 

f* = bK; SK = tol * \\bK\\ ; tK = \\LK(ÜK) - bK\\ - eK 

n = nmg 
while (tx > 0 and n > 0) do 

MG3 (u,u,f,K) 
n = n — 1 

** = ||I*(tt*)-6*||-e* 
od 

The number of iterations is limited by mng. 

Storage requirements 
Let the finest grid GK be either of the vertex-centered type given by (5.1.1) or of the cell- 

centered type given by (5.1.2).   Let in both cases na = n(
a     — ma ■ 2K.   Let the coarse 
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grids Gk, k = K — 1, K — 2,..., 1 be constructed by successive doubling of the mesh-sizes ha 

(standard coarsening). Hence, the number of grid-points Nk of Gk is 

d 

Nk=J[(l + ma-2
k)~M2kd (6.3.2) 

in the vertex-centered case, with 
d 

M =Y[ma, 

and 
Nk = M2kd (6.3.3) 

in the cell-centered case. In order to be able to solve efficiency on the coarsest grid G1 it is 
desirable that ma is small. Henceforth, we will not distinguish between the vertex-centered 
and cell-centered case, and assume that Nk is given by (6.3.3). 

It is to be expected that the amount of storage reqired for the computations that take 
place on Gk is given by C\Nk, with c\ some constant independent oik. Then the total amount 
of storage required is given by 

K 2d 
ciE^-¥-Tc* (6-3-4) 

Hence, as compared to single grid solutions on method selected, the use of multigrid increases 
the storage required by a factor of 2d/(2d— 1), which is 4/3 in two and 8/7 in three dimensions, 
so that the additional storage requirement posed by multigrid seems modest. 
Next, suppose that semi-coarsening (cf. Section 7.3) is used for the construction of the coarse 
grids Gk, k < K. Assume that in one coordinate direction the mesh-size is the same on all 
grids. Then 

Nk = M2K+k(d-V (6.3.5) 

and the total amount of storage required is given by 

K 2^-1 
^E^-^,!^ (6-3-6) 

k=\ 

Now the total amount of storage required by multigrid compared with single grid solution on 
GK increases by a factor 2 in two and 4/3 in three dimensions. Hence, in two dimensions the 
storage cost associated with semi-coarsening multigrid is not negligible. 
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Computational work 
We will estimate the computational work of one iteration with the fixed schedule algorithm 
MG2. A close approximation of the computational work wk to be performed on Gk will be 
wk = c2Nk, assuming the number of pre- and post-smoothings Vk and \i\. are independent of 
k, and that the operators Lk are of similar complexity (for example, in the linear case, Lk are 
matrices of equal sparsity). More precisely, let us define Wk to be all computing work involved 
in MG2 (ü,u,f,k), except the recursive call of MG2. Let Wk be all work involved in MG2 
(u,u,f,k). Let 7fc = 7, k = 2,3,..., if - 1, in subroutine MG2 (e.g., the V- or W-cycles). 
Assume standard coarsering. Then 

In [141] it is shown that if 

then 

Wk = c2M2kd + jWk-i (6.3.7) 

7 = 7/2d < 1 (6.3.8) 

WK<W= 1/(1 - 7) (6-3-9) 

with WK = WK/(c2NK) ■ 
The following conclusions may be drawn from (6.3.10). WK is the ration of multigrid work and 
work on the finest grid. The bulk of the work on the finest grid usually consists of smoothing. 
Hence, WK - 1 is a measure of the additional work required to accelerate smoothing on the 
finest grid GK by means of multigrid. 

If 7 > 1 the work WK is superlinear in the number of unknowns NK, see [141]. 

If 7 < 1 equation (6.3.9) gives 

WK < c2NK/(l - 7) (6-3.10) 

so that WK is linear in NK- It is furthermore significant that the constant of proportionality 
c2/(l - 7) is small. This because c2 is just a little greater than the work per grid point of the 
smoothing method, which is supposed to be a simple iterative method (if not, multigrid 

is not applied in an appropriate way). Since an (perhaps the main) attractive feaure of 
multigrid is the possibility to realize linear computational complexity with small constant of 
proportionality, one chooses 7 < 1, or 7 < 2d. In practice it is usually found that 7 > 2 does 
not result in significantly faster convergence. The rapid growth of WK with 7 means that it 
is advantageous to choose 7 < 2, which is why the V- and W-cycles are widely used. 

The computational cost of the F-cycle may be estimated as follows. In Figure 6.3.3 the 
diagram of the F-cycle has been redrawn, distinguishing between the work that is done on 
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Gk preceding coarse grid correction (pre-work, statements A in subroutine MG2) and after 
coarse grid correction (post-work, statements B in subroutine MG2). The amount of pre- 
and post-work together is C2M2kd, as before. It follows from the diagram, that on Gk the 
cost of pre- and post-work is incurred % times, with jk = K — k + 1, k — 2,3, -.-,K, and 
ji = K — l. For convenience we redefine j\ = K, bearing our earlier remarks on the inaccuracy 
and unimportance of the estimate of the work in G1 in mind. One obtains 

K 

WK = c2M ^(K - k + 1)2 kd 

We have 
K n(K+l)d nd 

as is checked easily. It follows that 

WK = c2M(2rf^+2) + K + 1- K2d)/(2d - l)2 

(6.3.11) 

(6.3.12) 

Figure 6.3.3: F-cycle (o pre-work, • post-work). 

so that 
WK <W= 1/(1 - 2"d)2 (6.3.13) 

Table 6.3.1 gives W as given by (6.3.9) and (6.3.13) for a number of cases.   The ratio of 
multigrid over single grid work is seen to be not large, especially in three dimensions.  The 
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V-cycle 4/3      8/7 
F-cycle 16/9 64/49 
W-cycle       2 4/3 
7 = 3 4 8/5 

Table 6.3.1: Values of W, standard coarsening 

F-cycle is not much cheaper than the W-cycle. In three dimensions the cost of the V-, F- and 
W-cycles is almost the same. 
Suppose next that semi-coarsening is used. Assume that in one coordinate direction the 
mesh-size is the same on all grids. The number of grid-points Nk of Gk is given by (6.3.5). 
With 7fc = 7, k = 2,3,..., K - 1 we obtain 

Wk = c2M2K+k^-^ + 7^-1 (6.3.14) 

Hence Wk is given by (6.3.8) and W by (6.3.9) with 7 = j/2d~1. For the F-cycle we obtain 

K 

WK = c2M2K Y,(K ~ k + l)2fc(d~1) (6.3.15) 

Hence 
l-d\2 WK < W = 1/(1 - 21~rf) 

_d 2      3 
V-cycle     2 4/3 
F-cycle     4 16/9 
W-cycle    -       2 
7=3          -       4 

Table 6.3.2: Values of W, semi-coarsening 

Table 6.3.2 gives W for a number of cases. In two dimensions 7 = 2 or 3 is not useful, because 
7 > 1. It may happen that the rate of convergence of the V-cycle is not independent of the 
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mesh-size, for example if a singular perturbation problem is being solved (e.g. convection- 
diffusion problem with e < 1), or when the solution contains singularities. With the W-cycle 
we have 7=1 with semi-coarsening, hence Wk = K. In practice, K is usually not greater 
than 6 or 7, so that the W-cycle is still affordable. The F-cycle may be more efficient. 

Work units 
The ideal computing method to approximate the behaviour of a given physical problem in- 
volves an amount of computing work that is proportional to the number and size of the 
physical changes that are modeled. This has been put forward as the 'golden rule of compu- 
tation' by Brandt [16]. As has been emphasized by Brand in a number of publications, e.g. 
[20], [21], [22], [16], this involves not only the choice of methods to solve (6.2.1), but also the 
choice of the mathematical model and its discretization. The discretization and solution pro- 
cesses should be interwined, leading to adaptive disretization. We shall not discuss adaptive 
methods here, but regard (6.2.1) as given. A practical measure of the minimum computing 
work to solve (6.2.1) is as follows. Let us define one work unit (WU) as the amount of comput- 
ing work required to evaluate the residual LK(uK) — b of Equation 6.2.1) on the finest grid 
GK. Then it is to be expected that (6.2.1) cannot be solved at a cost less than few WU, and 
one should be content if this is realized. Many publications show that this goal can indeed 
be achieved with multigrid for significant physical problems, for example in computational 
fluid dynamics. In practice the work involved in smoothing is by far the dominant part of the 
total work. One may, therefore, also define one work unit, following [20], as the work involved 
in one smoothing iteration on the finest grid GK. This agrees more or less with the first 
definition only if the smoothing algorithm is simple and cheap. As was already mentioned, if 
this is not the case multigrid is not applied in an appropriate way. One smoothing iteration 
on Gk then adds 2d(k~K> WU to the total work. It is a good habit, followed by many authors, 
to publish convergence histories in terms of work units. This facilitaties comparisons between 
methods, and helps in developing and improving multigrid codes. 

6.4    Nested iteration 

The algorithm 
Nested iteration, also called full multigrid (FMG, [22], [16]) is based on the following idea. 
When no a priori information about the solution is available to assist in the choice of the 
initial guess uK on the finest grid GK, it is obviously wasteful to start the computation on 
the finest grid, as is done by subroutines MGi, i = 1,2,3 of the preceding section. With 
an unfortunate choice of the initial uK, the algorithm might even diverge for a nonlinear 
problem. Computing on the coarse grids is so much cheaper, thus it is better to use the 
coarse grids to provide an informed guess for uK. At the same time, this gives us a choice 
for ük, k < K. Nested iteration is defined by the following algorithm. 
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(1) 

(2) 

(3) 

Program 1 
comment nested iteration algorithm 
Choose ü1 

S(Ü,Ü,f,;l) 
for k = 2 step 1 until K do 

uk = ük = Pkük~1 

for i = 1 step 1 until % do 
MG (ü,u,f,k) 

od 
od 

Of course, the value of jk inside MG may be different from %. 

Choice of prolongation operator 
The prolongation operator P does not need to be identical to Pk. In fact, there may be 
good reason to choose it differently. As discussed in [57] (for a simplified analysis see [141]), 

it is often advisable to choose P   such that 

mp > mc (6.4.1) 

where mp is the order of the prolongation operator as defined in Section 5.3, and mc is the 
order of consistency of the discretizations Lk, here assumed to be the same on all grids. Of- 
ten mc = 2 (second-order schemes). Then (6.4.1) implies that P is exact for second-order 
polynomials. 

Note that nested iteration provides uk; this is an alternative to (6.2.5). 

As discussed in [57] and [141], if MG converges well then the nested iteration algorithm 
results in a uK which differs from the solution of (6.2.1) by an amount of the order of the 
truncation error. If one desires, the accuracy of uK may be improved further by following 
the nested iteration algorithm with a few more multigrid iterations. 

Computational cost of nested iteration 
Let jk = 7, k - 2,3,..., K, in the nested iteration algorithm, let Wk be the work involved in 
MG (u,u, f, k), and assume for simplicity that the (negligible) work on G1 equals Wx. Then 

the computational work Wni of the nested iteration algorithm, neglecting the cost of P , is 
given by 

K 

'Wni = Y,Wk '   (6-4.2) 
k=\ 
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Assume inside Mg jk = 7, k = 2,3, ...,K and let 7 = j/2d < 1. Note that 7 and 7 may be 
different. Then it follows from (6.3.9) that 

Defining a work unit as 1 WU = c2NK, i.e. approximately the work of (y + fi) smoothing 
iterations on the finest grid, the cost of a nested iteration is 

W™- = 7/[(l-7)(l-2-d)]WU (6.4.4) 

Table 6.4.1 gives the number of work units required for nested iteration for a number of cases. 
The cost of nested iteration is seen to be just a few work units. Hence the fundamental 
property, which makes multigrid methods so attractive: multigrid methods can solve many 
problems to within truncation error at a cost of cN arithmetic operations. Here N is the 
number of unknowns, and c is a constant which depends on the problem and on the multigrid 
method (choice of smoothing method and of the parameters Uk,Hk,7k)- If the cost of the 
residual bK - LK(uK) is bN, then c need not be larger than a small multiple of b. Other 
numerical methods for elliptic equations require 0(Na) operations with a > 1, achieving 
0(N In N) only in special cases (e.g. separable equations). A class of methods which is com- 
petitive with multigrid for linear problems in practice are preconditioned conjugate gradient 
methods. Practice and theory (for special cases) indicate that these require 0(Na) opera- 
tions, with a = 5/4 in two and a = 9/8 in three dimensions. Comparisons will be given later. 

d 

7 2 3 
1 
2 

16/9 
8/3 

64/49 
48/21 

Table 6.4.1: Computational cost of nested iteration in work units; 7 

6.5    Non-recursive formulation of the basic multigrid algorithm 

Structure diagram for fixed multigrid schedule 
In FORTRAN, resursion is not allowed: a subroutine cannot call itself. The subroutines MG1, 
2, 3 of Section 6.3 cannot, therefore, be implemented directly in FORTRAN. A non-recursive 
version-will, therefore, be presented. At the same time, we will allow grater flexibility in the 
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decision whether to go to a finer or to a coarses grid. 

Various flow diagrams describing non-recursive multigrid algorithms have been published, 
for example in [20] and [57]. In order to arrive at a well structured program, we begin by 
presenting a structure diagram. A structure diagram allows much less freedom in the design 
of the control structure of an algorithm than a flow diagram. We found basically only one 
way to represent the multigrid algorithm in a structure diagram ([134], [140]). This structure 
diagram might, therefore, be called the canonical form of the basic multigrid algorithm. The 
structure diagram is given in Figure 6.5.1. This diagram is equivalent to Program 2 calling 
MG2 to do nmg multigrid iterations with finest grid GK in Section 6.3. The schedule is fixed 
and includes the V-, W- and F-cycles. Parts A and B are specified after subroutine MG2 in 
Section 6.3. Care has been taken that the program also works as a single grid method for 
K = 1. 

FORTRAN implementation of while clause 
Apart from the while clause, the structure diagram of Figure 6.5.1 can be expressed directly 
in FORTRAN. A FORTRAN implementation of a while clause is as follows. Suppose we 
have the following program 

while (n(K) > 0) do 
Statement 1 
n(K) = ... 
Statement 2 

od 

A FORTRAN version of this program is 

10    if {n(K) > 0) then 
Statement 1 
n{K) = ... 
Statement 2 
goto 10 

endif 
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Choose üK and 7 
comment 7 = 1: V-cycle : 7 = 2 ; W-cycle 

fK = bK ; k = K ; TIK = nmg 
if  (cycle eq F) then 7 = 2 endif 
while (TIK > 0) do 

\.            Uk eq 0 or k eq 1              ^^^^-^^^ 

F    \v          ^^^^^^                         T 

A \        k eq 1       ^—^^~^~^^ 

k = k-l 

F^\^Jt^^^^                     T 

£(«, «,/,'»*) 
nk = l */  (cycle eg F) ifoen 

7 = 1 
endi/ 

^~*\^            k eq K             ^^^^ 
F      ^^\^^     ^T 

& = & + 1 if (cycle eg F) then 
5 7 = 2 

endif 

«A: = »*: - 1 

Figure 6.5.1:   Structure diagram of non-recursive multigrid algorithm with fixed schedule, 
including V-, W- and F-cycles. 
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The goto statement required for the FORTRAN version of the while clause is the only goto 
needed in the FORTRAN implementation of the structure diagram of Figure 6.5.1. This 
FORTRAN implementation is quite obvious, and will not be given. 

Testing of multigrid software 
A simple way to test whether a multigrid algorithm is functioning properly is to measure the 
residual before and after each smoothing operation, and before and after each visit coarser 
grids. If a significant reduction of the size of the residual is not found, then the relevant 
part of the algorithm (smoothing or coarse grid correction) is not functioning proporly. For 
simple test problems predictions by Fourier smoothing analysis and the contraction number 
of the multigrid method should be correlated. If the coarse grid problem is solved exactly (a 
situation usually approximately realized with the W-cycle) the multigrid contraction number 
should usually be approximately equal to the smoothing factor. 

Local smoothing 
It may, however, happen, happen that for a well designed multigrid algorithm the contraction 
number is significantly worse than predicted by the smoothing factor. This may be caused 
by the fact that Fourier smoothing analysis is locally not applicable. The cause may be a 
local singularity in the solution. This occurs for example when the physical domain has a 
reentrant corner The coordinate mapping from the physical domain onto the computational 
rectangle is singular at that point. It may well be that the the smoothing method does not 
reduce the residual sufficiently in the neighbourhood of this singularity, a fact that does not 
remain undetected if the testing procedures recommended above are applied. The remedy is 
to apply additional local smoothing in a small number of points in the neighbourhood of the 
singularity. This procedure is recommended in [16], [17], [18], [9], and justified theoretically 
in [110] and [24]. This local smoothing is applied only to a small number of points, thus the 
computing work involved is negligible. 

6.6    Remarks on software 

Multigrid software development can be approached in various ways, two of which will be 
examined here. 

The first approach is to develop general building blocks and diagnostic tools, which helps 
users to develop their own software for particular applications without having to start from 
scratch, users will, therefore, need a basic knowledge of multigrid methods. Such software 
tool are described in [26]. 

The second approach is to develop autonomous (black box) programs, for which the user 
has to specify only the problem on the finest grid. A program or subroutine may be called 
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autonomous if it does not require any additional input from the user apart from problem spec- 
ification, consisting of the linear discrete system of equations to be solved and the right-hand 
side. The user does not need to know anything about multigrid methods. The subroutine is 
perceived by the user as if it were just another linear algebra solution method. This approach 
is adopted by the MGD codes [133], [67], [69], [68], [107], [108], which are available in the 
NAG library, and by the MGCS code [36]. 
Of course, it is possible to steer a middle course between the two approaches just outlined, 
allowing or requiring the user to specify details about the multigrid method to be used, such 
as offering a selection of smoothing methods, for example. Programs developed in this vein 
are BOXMG [37], [38], [39], the MG00 series of codes [45], [44], [113] which is available 
in ELLPACK [100], MUDPACK [3], [2], and the PLTMG code [11], [10], [12]. Exept for 
PLTMG and MGD, the user specifies the linear differential equation to be solved and the 
program generates a finite difference discretization. PLTMG generates adaptive finite ele- 
ment disretizations of non-linear equations, and therefore has a much wider scope then the 
other packages. As a consequence, it is not (meant to be) a solver as fast as the other methods. 

By sacrificing generality for efficiency very fast multigrid methods can be obtained for 
special problems, such as the Poisson or the Helmholtz equation. In MG00 this can be done 
by setting certain parameters. A very fast multigrid code for the Poisson equation has been 
developed in [13]. This is probably the fastest two-dimensional Poisson solver in existence. 
If one wants to emulate a linear algebraic systems solver, with only the fine grid matrix and 
right-hand side suplied by the user, then the se of coarse grid Galerkin appoximation (Chap- 
ter 5) is mandatory. Coarse grid Galerkin approximation is also required if the coefficients 
in the differential equations are discontinuous. Coarse grid Galerkin approximation is used 
in MGD, MGCS and BOXMG; the last two codes use operator-dependent transfer operators 
and are applicable to problems with discontinuous coefficients. 

In an autonomous subroutine the method cannot be adapted to the problem, so that user 
expertise is not required. The method must, therefore, be very robust. If one of the smoothers 
that were fund to be robust in Chapter 4 is used, the required degree of robustness is indeed 
obtained for linear problems. 

Non-linear problems may be solved with multigrid codes for linear problems in various 
ways. The problem may be linearized and solved iteratively, for example by Newton method. 
This works well as long as the Jacobian of the non-linear discrete problem is non-singular. 
It may well happen, however, that the given continuous problem has no Frechet derivative. 
In this case the condition of the Jacobian deteriorates as the grid is refined, and the Newton 
method does not converge rapidly or not at all. An example of this situation is given [96], 
[95]. The non-linear multigrid method can be used safely and efficiently, because the global 
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system is not linearized. A systematic way of applying numerical software outside the class 
of problems to which the software is directly applicable is the defect correction approach. In 
[5] and [15] it is pointed out how this ties in with multigrid methods. 
Much software is made available on MGNet. 

6.7    Comparison with conjugate gradient methods 

Although the scope and applicability of multigrid principles are much broader, multigrid 
methods can be regarded as very efficient ways to solve linear systems arising from discretiza- 
tion of partial differential equations. As such multigrid can be viewed as a technique to 
accelerate the convergence of basic iterative methods (called smoothers in the multigrid con- 
text). Another powerful technique to accelerate basic iterative methods for linear problems 
that also has come to fruition relatively recently is provided by conjugate gradient and re- 
lated methods. For an introduction to conjugate gradient acceleration of iterative methods, 
see [63], [48] or (for a very brief synopsis) [141]. 

It is surprising that, although the algorithm is much simpler, the rate of convergence of 
conjugate gradient methods is harder to estimate theoretically than for multigrid methods. In 
two dimensions, 0(N5/4) computational complexity, and probably 0(N9/8) in three dimen- 
sions seems to hold approximately quite generally for conjugate gradient methods precondi- 
tioned by approximate factorization, which comes close to the O(N) of multigrid methods. 

Conjugate gradient acceleration of multigrid 
The conjugate gradient method can be used to accelerate any iterative method, including 
multigrid methods. If the multigrid algorithm is well designed and fits the problem it will 
converge fast, making conjugate gradient acceleration superfluous or even wasteful. If multi- 
grid does not converge fast one may try to remedy this by improving the algorithm (for 
example, introducing additional local smoothing near singularities, or adapting the smoother 
to the problem), but if this is impossible because an autonomous (black box) multigrid code is 
used, or difficult because one cannot identify the cause of the trouble, then conjugate gradient 
acceleration is an easy and often very efficient way out. 

The non-symmetric case 
A severe limitation of conjugate gradient methods is their restriction to linear systems with 
symmetric positive definite matrices. A number of conjugate gradient type methods have 
been proposed that are applicable to the non-symmetric case. Although no theoretical es- 
timates are available, their rate of convergence is often satisfactory in practice. Two such 
methods are CGS (conjugate gradient squared), described in [107], [108], [105] and [141], and 
GMRES, described in [102], [121], [120], [131], [132]. Good convergence is expected if the 
eigen eigenvalues of A have positive real part, cf. the remarks on convergence in [105]. 
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Comparison of conjugate gradient and multigrid methods 
Realistic estimates of the performance in practice of conjugate gradient and multigrid methods 
by purely theoretical means are possible only for very simple problems. Therefore numerical 
experiments are necessary to obtain insight and confidence in the efficiency and robustness 
of a particular method. Numerical experiments can be used only to rule out methods that 
fail, not to guarantee good performance of a method for problems that have not yet been 
attempted. Nevertheless, one strives to build up confidence by carefully choosing tests prob- 
lems, trying to make them representative for large classes of problems, taking into account 
the nature of the mathematical models that occur in the field of application that one has in 
mind. For the development of conjugate gradient and multigrid methods, in particular the 
subject areas of computational fluid dynamics, petroleum reservoir engineering and neutron 
diffusion are pace-setting. 

Important constant coefficient test problems are (4.5.3) and (4.5.4). Problems with con- 
stant coefficients are thought to be representative of problems with smoothly varying coeffi- 
cients. Of course, in the code to be tested the fact that the coefficients are constant should 
not be exploited. As pointed out in [35], one should keep in mind that for constant coefficient 
problems the spectrum of the matrix resulting from discretization can have very special prop- 
erties, that are not present when the coefficients are variable. Therefore one should also carry 
out tests with variable coefficients, especially with conjugate gradient methods, for which the 
properties of the spectrum are very important. For multigrid methods, constant coefficient 
test problems are often more demanding than variable coefficient problems, because it may 
happen that the smoothing process is not effective for certain combinations of e and ß. This 
fact goes easily unnoticed with variable coefficients, where the unfavourable values of e and 
ß perhaps occur only in a small part of the domain. 

In petroleum reservoir engineering and neutron diffusion problems quite often equations 
with strongly discontinuous coefficients appear. For these problems equations (4.5.3) and 
(4.5.4) are not representative. Suitable test problems with strongly discontinuous coefficients 
have been proposed in [111] and [79]; a definition of these test problems may also be found 
in [80]. In Kershaw's problem the domain is non-rectangular, but is a rectangular polygon. 
The matrix for both problems is symmetric positive definite. With vertex-centered multigrid, 
operator-dependent transfer operators have to be used, of course. 

The four test problems just mentioned, i.e. (4.5.3), (4.5.4) and the problems of Stone 
and Kershaw, are gaining acceptance among conjugate gradient and multigrid practitioners 
as standard test problems. Given these test problems, the dilemma of robustness versus 
efficiency presents itself. Should one try to devise a single code to handle all problems (ro- 
bustness), or develop codes that handle only a subset, but do so more efficiently than a robust 
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code? This dilemma is not novel, and just as in other parts of numerical mathematics, we 
expect that both approaches will be fruitful, and no single 'best' code will emerge. 

Numerical experiments for the test problems of Stone and Kershaw and equations (4.5.3) 
and (4.5.4), comparing CGS and multigrid, are described in [107], using ILU and IBLU pre- 
conditioning and smoothing. As expected, the rate of convergence of multigrid is unaffected 
when the mesh size is decreased, whereas CGS slow down. On a 65 x 65 grid there is not great 
difference in efficiency. Another comparison of conjugate gradients and multigrid is presented 
in [40]. Robustness and efficiency of conjugate gradient and multigrid methods are deter- 
mined to a large extent by the preconditioning and the smoothing method respectively. The 
smoothing methods that were found to be robust on the basis of Fourier smoothing analysis in 
Chapter 4 suffice, also as preconditioners. It may be concluded that for medium-sized linear 
problems conjugate gradient methods are about equally efficient as multigrid in accelerating 
basic iterative methods. As such they are limited to linear problems, unlike multigrid. On 
the other hand, conjugate gradient methods are much easier to program, especially when the 
computational grid is non-rectangular. 

7    Finite volume discretization 

7.1 Introduction 

In this chapter some essentials of finite volume discretization of partial differential equations 
are summarised. For a more complete elementary introduction, see for example [46] or [89]. 
We will pay special attention to the handling of discontinuous coefficients, because there seem 
to be no texts giving a comprehensive account of discretization methods for this situation. 
Discontinuous coefficients arise in important application areas, such as porous media flows 
(reservoir engineering), and require special treatment in the multigrid context. Furthermore, 
hyperbolic systems will be briefly discussed. 

7.2 An elliptic equation 

Cartesian tensor notation is used with convectional summation over repeated Greek subscripts 
(not over Latin subscripts). Greek subscripts stand for dimension indices and have range 1, 2, 
..., d with d the number of space dimensions. The subscript >a denotes the partial derivative 
with respect to xa. 
The general single second-order elliptic equation can be written as 

Lu = -(aaßu<a)tß + (bau)}a + cu = s   in   ft C Md (7.2.1) 
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The diffusion tensor aap is assumed to be symmetric: aap = apa. The boundary conditions 
will be discussed later. Uniform ellipticity is assumed: there exists a constant C > 0 such 
that 

aaßVaVß > Cvava,   Vt> G Rd (7.2.2) 

For d = 2 this is equivalent to Equation (7.2.9). 

The domain 0 
The domain fi is taken to be the d-dimensional unit cube. This greatly simplifies the con- 
struction of the various grids and the transfer operators between them, used in multigrid. 
In practice, multigrid for finite difference and finite volume discretization can in principe be 
applied to more general domains, but the description of the method becomes complicated, 
and general domains will not be discussed here. This is not a serious limitation, because the 
current main trend in grid generation consists of decomposition of the physical domain in 
subdomains, each of which is mapped onto a cubic computational domain. In general, such 
mappings change the coefficients in (7.2.1). As a result, special properties, such as separa- 
bility or the coefficients being constant, may be lost, but this does not seriously hamper the 
application of multigrid, because this approach is applicable to (7.2.1) in its general form. 
This is one of the strengths of multigrid as compared with older methods. 

The weak formulation 
Assume that a is discontinuous along some manifold T C fi, which we will call an interface; 
then Equation (7.2.1) now has to be interpreted in the weak sense, as follows. From (7.2.1) 
it follows that 

(Lu, v) = (s, v)   Vv £ H,    (u, v)=  I uvdtl (7.2.3) 
a 

where H is a suitable Sobolev space. Define 

a(u, v)   =    f aaßUt0tVßd£l — f aaßU}anßvdT 
a an (7.2.4) 

b(u,v)    =   j{bau),avdti 
Q 

with nß the Xß component of the outward unit normal on the boundary dQ, of 0. Application 
of the Gauss divergence theorem gives 

(Lu, v) = a(u, v) + b(u, v) + (cu, v) (7.2.5) 

The weak formulation of (7.2.1) is 

Find   u G H   suchthat   a(tt, v) + b(u, v) + (cu, v) = (s, v),   Vv G H (7.2.6) 
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For suitable choices of H, H and boundary conditions, existence and uniqueness of the solution 
of (7.2.6) has been established. For more details on the weak formulation (not needed here), 
see for example [31] or [58]. 

The jump condition 
Consider the case with one interface F, which divides Q in two parts Q,\ and fi2, in each of 
which aaß is continuous. At F, aaß(x) is discontinuous. Let indices 1 and 2 denote quantities 
on T at the side of fii and Ü2, respectively. Application of the Gauss divergence theorem to 
(7.2.5) gives, if u is smooth enough in Q1 and ft2, 

a(u, v) = -      (aaßujCt):ßvdÜ + I(a\ßu]a - a2
aßu

2
a)nßvdT (7.2.7) 

ü\T r 

Hence, the solution of (7.2.6), if it is smooth enough in fti and ft2, satisfies (7.2.1) in ft \ F, 
together with the following jump condition on the interface T 

ß»ß = alß
u%nß   on   r (7-2-8) 

This means that where aaß is discontinuous, so is u<a. This has to be taken into account in 
constructing discrete approximations. 

Exercise 3.2.1. Show that in two dimensions Equation (7.2.2) is equivalent to 

011^22 - a?2 > 0 (7.2.9) 

7.3    A one-dimensional example 

The basic ideas of finite difference and finite volume discretization taking discontinuities in 
aaß into account will be explained for the following example 

- (att,i),i = a,    x eÜ = (0,1) (7.3.1) 

Boundary conditions will be given later. 

Finite difference discretization 
A computational grid G C Ö is defined by 

G = {x 6 M:x = xj = jh, j = 0,1,2, ...,n, h = 1/n} (7.3.2) 

Forward and backward difference operators are defined by 

AUJ = (wj+i — Uj)/h,   VUJ = (UJ — Uj-i)/h (7.3.3) 
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A finite difference approximation of (7.3.1) is obtained by replacing d/dx by A or V. A nice 
symmetric formula is 

-i{V(aA) + A(aV)K = 5j,   j = l,2,...,n- 1 (7.3.4) 

where Sj = S(XJ) and Uj is the numerical approximation of U(XJ). Written out in full, 
Equation (7.3.4) gives 

{-(OJ_I + aj)ttj_i + (ßj-i + 2oj + aj+i)UJ - (a, + aj+1)uj+1}/2h2 = Sj, ,? 3 ^ 
j = 1,2, ...,n- 1 

If the boundary condition at x = 0 is u(0) = / (Dirichlet), we elimine t*o from (7.3.5) with 
UQ — /. If the boundary condition is a(0)w?i(0) = / (Neumann), we write down (7.3.5) 
for j — 0 and replace the quantity — (a_i + ao)«_i + (a_i + ao)«o by 2/. If the boundary 
condition is c\Ui(0) + C2«(0) = / (Robin), we again write down (7.3.5) for j = 0, and replace 
the quantity just mentioned by 2(/ — C2Uo)a(0)/ci. The boundary condition at x = 1 is 
handled in a similar way. 

An interface problem 
In order to show that (7.3.4) can be inaccurate for interface problems, we consider the following 
example 

a(x) - s,   0 < x < x*,    a(x) = 1,    x* < x < 1 (7.3.6) 

The boundary conditions are: u(0) = 0, u(l) = 1. The jump condition (7.2.8) becomes 

£ lim uti = Um u i (7.3.7) 
x\x*    ' x\x* 

By postulating a piecewise linear solution the solution of (7.3.1) and (7.3.7) is found to be 

u   =   ax, 0 < x < x*,   u = eax + 1 — ea,    x* < x < 1, ,        , 
a   =   l/(x*-ex* + e) (        } 

Assume Xk < x* < Xk+\. By postulation a piecewise linear solution 

Uj-aj,   0 <;'<&,    UJ = ßj -ßn + 1,    k + 1 < j < n (7.3.9) 

one finds that the solution of (7.3.5), with the boundary conditions given above, is given by 
(7.3.9) with 

-l 

ß = sa,    a = (e-—- + e(n - k) + k j (7.3.10) 

Hence 

Uk = eh(l -e)/(l + e) + (l-e)xk + e (7-3-11) 
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Let x* = Xk+i ■ The exact solution in Xk is 

u(x.) = X±  (7.3.12) 

Hence, the error satisfies 

uk - u(xk) = 0 (e\^h) (7-3-13) 

As another example, let x* = xk + h/2. The numerical solution in xk is still given by (7.3.11). 
The exact solution in xk is 

u(x^ = — rr- (7.3.14) U[Xk)     (l-e)xk + e + h(l-e)/2 

The error in xk satisfies 

uk - u(xk) = 0 (§^h) (7-3.15) 

When a(x) is continuous (e = 1) the error is zero. For general continuous a(x) the error is 
0(h2). When a(x) is discontinuous, the error of (7.3.4) increases to 0(h). 

Finite volume discretization 
By starting from the weak formulation (7.2.6) and using finite volume discretization one may 
obtain 0{h2) accuracy for discontinuous a(x). The domain 0, is (almost) covered by cells or 
finite volumes Q,j, 

Slj = {xj-h/2,Xj + h/2),   j = l,2,...,n-l (7.3.16) 

Let v(x) be the characteristic function of Oj 

t>(a:) = 0,    x^Üj]    v(x) = l,    x € fy (7.3.17) 

A convenient unified treatment of both cases: a(x) continuous and a(x) discontinuous, is as 
follows. We approximate a(x) by a piecewise constant function that has a constant value a,j 
in each Ctj. Of course, this works best if discontinuities of a(x) lie at boundaries of finite 
volumes tij. One may take a,j = a(xj), or 

a,j = h~x I add . 

With this approximation of a(x) and v according to (7.3.17) one obtains from (7.2.7) 

a(u,v)   =    -    (au,i)tidQ 

=   -'«AW+ÜI   if   l<i<»-l (7-3-18) 

116 



By taking successively j = 1,2,..,n— 1, Equation (7.2.6) leads to n — 1 equations for the n— 1 
unknowns «j(«o = 0 and un = 1 are given), after making further approximations in (7.3.18). 

In order to approximate au,i(xj + h/2) we proceed as follows. Because auti is smooth, 
uti(xj + h/2) does not exist if a(x) jumps at x = Xj + h/2. Hence, it is a bad idea to discretize 
uti(xj + h/2). Instead, we write 

Xj+l Xj + 1 Xj + l 

u \-j+1 =    /   ut\dx =    /   -au^dx = (a«i)j+i/2   /   —dx (7.3.19) 

where we have exploited the smoothness of auti. We have 

f -dx = h/Wj (7.3.20) 

with Wj the harmonic average of aj and aj+i: 

Wj = 2aJ-oi+i/(oi + aj+i) (7.3.21) 

and we obtain the following approximation: 

(aul)j+i/2 - Wj(uj+1 - Uj)/h (7.3.22) 

With equations (7.3.18) and (7.3.22), the weak formulation (7.2.6) leads to the following 
discretization: 

Wj-\(uj — tij_i)//i— Wj(iij+i - Uj)/h = hsj,   j = l,2,...,n— 1 (7.3.23) 

with 
Sj = h~l / sdx . 

When a(x) is smooth, Wj fa (aj + aj+i)/2, and we recover the finite difference approximation 
(7.3.5). 
Equation (7.3.23) can be solved in a similar way as (7.3.5) for the interface problem under 
consideration. Assume x* = Xk + h/2. Hence 

WJ = £,    l<j<k;   wk = 2e/(l + e);   WJ = 1,   k < j < n - 1 . (7.3.24) 

Again postulating a solution as in (7.3.9) one finds 

ß = ae,   a = w/[e - we(k + 1 - n) + wk] (7.3.25) 
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or 
a = [(1 - e)/2 + e{n - k) + k]'1 = h/[(xk + h/2)(l - e) + e] (7.3.26) 

Comparison with (7.3.8) shows that Uj = U(XJ): the numerical error is zero. In more general 
circumstances the error will be 0(h2). Hence, finite volume discretization is more accurate 
than finite difference discretization for interface problems. 

Exercise 3.3.1 The discrete maximum and l2 norms are defined by, respectively, 

Hoo = max{K-|:0<i<n},    Mo = h I £ u) \ (7.3.27) 

Estimate the error in the numerical solution given by (7.3.9) in these norms. 

7.4    Cell-centered discretization in two dimensions 

Cell-centered grid 
The domain Cl is divided in cells as before, but now the grid points are the centers of the 
cells, see Figure 7.4.1. The computational grid G is defined by 

G = {x £ SI : x = XJ = (j - s)h, j = (ii,J2), s = (g> g)'    ■ 

h = (hi,h2), ja = 1,2,...,na, ha = l/na} (7-4.1) 

The cell with centre Xj is called Uj. Note that in a cell-centered grid there are no grid points 
on the boundary dQ,. 

Finite volume discretization in two dimensions 
Integration of (7.2.1) over a finite volume ilj gives, with c = s = 0 for brevity, 

-  / aa0UtOlnpdT + / baunadT = 0 (7.4.2) 

with Tj the boundary of Uj and n the outward unit normal. Let us (denote) the "east" part 
of ri; at sei = (ii + |)/ii, by Te. On Te,n = (1,0). 

The convection term 
We write 

jhudT ^ h2(hu)jl+1/2ij2 (7.4.3) 

118 



• ••••• 

• ••••• 

• • •            •            •           • 

• ••••• 
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Figure 7.4.1: Cell-centered grid. (• grid points; finite volume boundaries.) 

Central discretization gives 

(Mj!+i/2J2 - gKMj + (Mii+i,»} 

Upwind discretization gives 

(M)ji+i/2j2 = ^{(h + \h\u}j + -{(öi - \h\)u}h+hj2 ' 

If ai2 = 0 then (7.4.4) results in a iif-matrix (definition 3.2.5) only if with w defined below 

(7.4.4) 

(7.4.5) 

h\bh+l,J21 ^ o       h\bh-hh\ <2 < 2 (7.4.6) 
Wi!+1/2J2 Wil-1/2J2 

whereas, if a12 = 0, (7.4.5) always results in a üf-matrix. The advantages of having a üf-matrix 
are 

Monotonicity: absence of numerical wiggles. 

Good behaviour of iterative solution methods, including multigrid, as discussed in Chap- 
ter 4. 

The diffusion term 
We write 

/ aaiu>adT = h,2(aaiuta)jl+1/2,j2 
(7.4.7) 
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and approximate the flux Fjl+l/2,h = (a«i«,a)ji+i/2j2 in a similar waf as in the one" 
dimensional case, taking into account the fact that («,i)j+i/2,j2 

does not exist' but F and U'2 

are smooth. We have 
xJl+l.i2 XJ1 + 1,J2 

x]l ,32 31 '32 
x 31+1,32 

/     ltdxi = hllwi 
»ii + 1,1/2 

/     ^{(aia« «) - «12« 2}^ 

^1+1/2,^2 ^1+1,1/2 

-    ^+1/2.»      /      i^i - (u-2)ii+i/2J2      /     au/andxi 
Xj xj 

(7.4.8) 

We now assume that a12 = 0, or else that u>2 may be approximated by 

This will be accurate only of aap is smooth at the north and south edges, the general case 
seems not to have been investigated. 

We obtain, with 
x3l+l,32 

^Jl ,32 

x 31+1,32 

Fjl+i/2,h = wn+1/2,j2u\^
h/h + (u2)n+1/2j2    J    a12/andXl 

xii,J2 

With (7.4.9) the if-matrix property is lost. The off-diagonal elements with the wrong side 
are much smaller than those generated by central discretization of the convection term at 
high Peclet number, and usually results obtained and performance of iterative methods are 
still satisfactory. See [141] for more details, including a discretization that gives a üf-matrix 
for a\2 T^ 0. 

7.5    A hyperbolic system 

Hyperbolic system of conservation laws 
In this section we consider the following hyperbolic system of conservation laws: 

£ + M=>+ *$=> = ,, (,,f)en, <e(o,r] (7.5.1) 
at        ox oy 
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where 
u:[0,T]xSl-+SaClRp,   s : [0,T] x ft -► Mp,    f,g:Sa-*lRp (7.5.2) 

Here Sa is the set of admissible states. For example, if one of the p unknowns, %i say, is 
the fluid density or the speed of sound in a fluid mechanics application, then «,- < 0 is not 
admissible. Equation (7.5.1) is a system of p equations with p unknowns. Here we abandon 
Cartesian tensor notation for the more convenient notation above. Equation (7.5.1) is assumed 
to be hyperbolic. 

Definition 7.5.1 Equation (7.5.1) is called hyperbolic with respect to t if there exist for all 
<p € [0, 2-K) and admissible u a real diagonal matrix D(u, <p) and non-singular matrix R(u, (p) 
such that 

A(u,(p)R(u, (p) = R(u, (p)D(u, <p) (7.5.3) 

where 

A(u,V)=coBV^ + 8m<p°4£ (7.5.4) 

The main example to date of systems of type (7.5.1) to which multigrid methods have been 
applied successfully are the Euler equations of gas dynamics. See [34] for more details on 
the mathematical properties of these equations and of hyperbolic systems in general. For 
numerical aspects of hyperbolic systems, see [101] or [104]. 

For the discretization of (7.5.1), schemes of Law-Wendroff type (see [101]) have long been pop- 
ular and still are widely used. These schemes are explicit and, for time-dependent problems, 
there is no need for multigrid: stability and accuracy restrictions on the time step At are 
about equaly severe. If the time-dependent formulation is used solely as a means to compute 
a steady state, then one would like to be unrestricted in the choice of At ands/or use artificial 
means to get rid of the transients quickly. 

In [92] a method has been proposed to do this using multiple grids. This method has 
been developed further in [76], [30] and [77]. The method is restricted to Lax-Wendroff type 
formulations. 

Finite volume discretization 
Following the main trend in contemporary computational fluid dynamics, we discuss only the 
cell-centered case. The grid is given in Figure 7.4.1. Integration of (7.5.1) over tij gives, using 
the Gauss divergence theorem, 

d_ 
dt 

f udQ, + f(f(u)nx + g(u)ny)dT = f Sdti (7.5.5) 

r> n> 
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where Tj is the boundary of Q,j. With the approximations 

fudÜ ~ |fi,-|ttj,     / Sdtt ~ \uj\aj (7.5.6) 

where \Clj\ is the area of Oj, Equation (7.5.5) becomes 

\üj\duj/dt + J(f(u)nx + aCtiJn^dr = \fy\sj (7.5.7) 

Ti 

The time discretization will not be discussed. The space discretization takes place by approx- 
imating the integral over Tj. 
Let A- xj + (h1/2,-h2/2), B = Xj + (hi/2,h2/2), so that AB is part of Tj. On AB, nx = 1 
and ny = 0. We write 

B 

Jf(u)dx2^h2f(u)c (7.5.8) 
A 

with C the midpoint of AB. Central space discretization is obtained with 

f(u)c = lf(uj) + ±f(uj+ei) (7.5.9) 

In the presence of shocks, this does not lead to the correct weak solution, unless thermo- 
dynamic irreversibility is enforced. This may be done by introducing artificial viscosity, an 
approach followed in [72]. Another approach is to use upwind space discretization, obtained 
by flux splitting: 

f(u) = f+(u) + f-(u) (7.5.10) 

with /±(tt) choosen such that the eigenvalues of the Jacobians of /*(«) satisfy 

\(df+/du)>0,    X(df~/du)<0 (7.5.11) 

There are many splittings satisfying (7.5.11). For a survey of flux splitting, see [64] and [126]. 
With upwind discretization, f(u)c is approximated by 

f(u)c*f
+(uj + f-(uj+ei)) (7.5.12) 

The implementation of boundary conditions for hyperbolic systems is not simple, and will 
not be discussed here; the reader is referred to the literature mentioned above. 

Exercise 7.5.1 Show that the flux splitting (7.4.5) satisfies (7.5.11). 

122 



8     Conclusion 

An introduction has been presented to the application of multigrid methods to the numerical 
solution of elliptic and hyperbolic partial differential equations. 

Because robustness is stongly influenced by the smoothing method used, much attention has 
been given to smoothing analysis, and many possible smoothing methods have been presented. 

An attempt has been made to review much of the literature, to help the reader to find his 
way quickly to material relevant to his interests. For more information, see [141]. 

In this book application of multigrid to the eqations of fluid dynamics is reviewed, a topic 
not covered here. There the full potential equation, the Euler equations, the compressible 
Navier-Stokes equations and the incompressible Navier-Stokes and Boussinesq equations are 
treated. 

The principles discussed in these notes hold quite generally, making solution possible at a cost 
of a few work units, as discussed in chapter 6, for problems more difficult than considered 

here. 
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